Skip to main content
Log in

Electrochemical fabrication and characterization of nanocontacts and nm-sized gaps

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Copper nanocontacts and molecular-sized nanogaps were prepared and characterized at electrified solid/liquid interfaces employing lithographic and electrochemical techniques. A dedicated four-electrode potentiostat was developed for controlling the electrochemical fabrication process and for monitoring the electrical characteristics of the nanostructures created. The formation and breaking of Cu nanocontacts exhibits conductance quantization characteristics. The statistical analysis of conductance histograms revealed a preferential stability of nanocontacts with integer values of G0, with a clear preference for 1 G0, 2 G0 and 3 G0. The growth of molecular-sized gaps shows quantized tunneling current, which is attributed to the discrete nature of Cu atoms, water molecules, and specifically adsorbed ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Meindel, Q. Chen, J.A. Davis, Science 293, 2044 (2001)

    Article  ADS  Google Scholar 

  2. R.L. McCreery, Chem. Mater. 16, 4477 (2004)

    Article  Google Scholar 

  3. B.A. Mantooth, P.S. Weiss, Proc. IEEE 91, 1785 (2003)

    Article  Google Scholar 

  4. U. Banin, Y. Cao, D. Katz, O. Millo, Nature 400, 542 (1999)

    Article  ADS  Google Scholar 

  5. D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P. McEuen, Nature 389, 699 (1997)

    Article  ADS  Google Scholar 

  6. Z. Chen, J. Appenzeller, Y.M. Lin, J. Sippel-Oakley, A.G. Rinzler, J. Tang, S.J. Wind, P.M. Solomon, P. Avouris, Science 311, 1735 (2006)

    Article  Google Scholar 

  7. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  8. E.C. Walter, K. Ng, M.P. Zach, R.M. Penner, F. Favier, Microelectron. Eng. 6162, 555 (2002)

    Google Scholar 

  9. A. Aviram, M. Ratner, V. Mujica (Eds.), Molecular Electronics II (Ann. NY Acad. Sci., New York, 2002)

  10. M.A. Guillorn, D.W. Carr, R.C. Tibeno, E. Greenbaum, M.L. Simpson, J. Vac. Sci. Technol. B 18, 1177 (2000)

    Article  Google Scholar 

  11. A. Bezryadin, C. Dekker, G. Schmid, Appl. Phys. Lett. 71, 1273 (1997)

    Article  ADS  Google Scholar 

  12. C. Zhou, M.R. Deshpande, M.A. Reed, H.L. Jones, J.M. Tour, Appl. Phys. Lett. 71, 611 (1997)

    Article  ADS  Google Scholar 

  13. R. Sordan, M. Burghard, K. Kern, Appl. Phys. Lett. 79, 2073 (2001)

    Article  ADS  Google Scholar 

  14. C.J. Muller, J.M. van Ruitenbeek, L.J. de Jongh, Physica C 191, 485 (1997)

    Article  ADS  Google Scholar 

  15. N. Agrait, A. Levi-Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003)

    Article  ADS  Google Scholar 

  16. J.K. Gimzewski, R. Moller, Phys. Rev. B 36, 1284 (1987)

    Article  ADS  Google Scholar 

  17. H. Park, P.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301 (1999)

    Article  ADS  Google Scholar 

  18. C.Z. Li, N.J. Tao, Appl. Phys. Lett. 72, 894 (1998)

    Article  ADS  Google Scholar 

  19. A.F. Morpurgo, C.M. Marcus, D.B. Robinson, Appl. Phys. Lett. 74, 2084 (1999)

    Article  ADS  Google Scholar 

  20. C.Z. Li, H.X. He, N.J. Tao, Appl. Phys. Lett. 77, 3995 (2000)

    Article  ADS  Google Scholar 

  21. J. Li, Y. Yamada, K. Murakoshi, Y. Nakato, Chem. Commun. 2170 (2001)

  22. Y.V. Kervennic, H.S.J. van der Zant, A.F. Morpurgo, L. Gurevich, L.P. Kouvenoven, Appl. Phys. Lett. 80, 321 (2002)

    Article  ADS  Google Scholar 

  23. S. Boussaad, N.J. Tao, Appl. Phys. Lett. 80, 2398 (2002)

    Article  ADS  Google Scholar 

  24. J. Li, T. Kanzaki, K. Murakoshi, Y. Nakato, Appl. Phys. Lett. 81, 123 (2002)

    Article  ADS  Google Scholar 

  25. Y. Kashimura, H. Nakashima, K. Furukawa, K. Torimitsu, Thin Solid Films 438, 317 (2003)

    Article  Google Scholar 

  26. M.M. Deshmukh, A.L. Prieto, Q. Gu, H. Park, Nano Lett. 3, 1383 (2003)

    Article  Google Scholar 

  27. L.H. Yu, D. Natelson, Appl. Phys. Lett. 82, 2332 (2003)

    Article  ADS  Google Scholar 

  28. F. Elhoussine, A. Encinas, S. Matefi-Tempfli, L. Piraux, J. Appl. Phys. 93, 8567 (2003)

    Article  ADS  Google Scholar 

  29. Y.V. Kervennic, D. Vanmaekelbergh, L.P. Kouwenhoven, H.S.J. van der Zant, Appl. Phys. Lett. 83, 3782 (2003)

    Article  ADS  Google Scholar 

  30. F.Q. Xie, L. Nittler, C. Obermair, T. Schimmel, Phys. Rev. Lett. 93, 128303-1 (2004)

    Google Scholar 

  31. J. Xiang, B. Liu, S.T. Wu, B. Ren, F.Z. Yang, B.W. Mao, Y.L. Chow, Z.Q. Tian, Angew. Chem. Int. Edit. 44, 1265 (2005)

    Article  Google Scholar 

  32. Q. Qing, F. Chen, P. Li, W. Tang, Z. Wu, Z. Liu, Angew. Chem. Int. Edit. 44, 7771 (2005)

    Article  Google Scholar 

  33. U. Landman, Proc. Nat. Acad. Sci. 102, 6671 (2005)

    Article  ADS  Google Scholar 

  34. B. Xu, H. He, S. Boussaad, N.J. Tao, Electrochim. Acta 48, 3085 (2003)

    Article  Google Scholar 

  35. N.J. Tao, Nature Nanotechnol. 1, 173 (2006)

  36. S. Kronholz, S. Karthäuser, A. van der Hart, T. Wandlowski, R. Waser, Microelectron. J. 37, 591 (2006)

    Article  Google Scholar 

  37. G. Meszaros, T. Wandlowski, Rev. Sci. Instrum. (2007), in preparation

  38. T. Wandlowski, K. Ataka, S. Pronkin, D. Diesing, Electrochim. Acta 49, 1233 (2004)

    Article  Google Scholar 

  39. M.A. Schneeweiss, D.M. Kolb, Phys. Stat. Solidi A 173, 51 (1999)

    Article  ADS  Google Scholar 

  40. T. Wandlowski, unpublished

  41. A.J. Bard, L.R. Faulkner, Electrochemical Methods – Fundamentals and Applications (Wiley, New Jersey, 2001)

    Google Scholar 

  42. G. Rubio, N. Agrait, S. Viera, Phys. Rev. Lett. 76, 2302 (1996)

    Article  ADS  Google Scholar 

  43. C.Z. Li, A. Bogozi, W. Huang, N.J. Tao, Nanotechnology 10, 221 (1999)

    Article  ADS  Google Scholar 

  44. L. Olesen, E. Lengsgaard, I. Stensgaard, F. Besenbacher, J. Schiotz, R. Stolze, K.W. Jacobsen, J.K. Norskov, Phys. Rev. Lett. 72, 2251 (1994)

    Article  ADS  Google Scholar 

  45. J.L. Costa-Krämer, N. Garcia, P. Garcia-Mochales, P.A. Serena, Surf. Sci. 342, L1144 (1995)

    Article  Google Scholar 

  46. S. Boussaad, B.Q. Xu, L.A. Nagahara, I. Amlani, W. Schmickler, R. Tsui, N.J. Tao, J. Chem. Phys. 118, 889 (2003)

    Article  Google Scholar 

  47. G. Nagy, T. Wandlowski, Langmuir 19, 10271 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wandlowski.

Additional information

PACS

73.23Ad; 73.63.Rt; 82.45.Yz; 85.35.-p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mészáros, G., Kronholz, S., Karthäuser, S. et al. Electrochemical fabrication and characterization of nanocontacts and nm-sized gaps. Appl. Phys. A 87, 569–575 (2007). https://doi.org/10.1007/s00339-007-3903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3903-2

Keywords

Navigation