Skip to main content
Log in

Hot electron injector Gunn diode for advanced driver assistance systems

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reviews the main aspects of the design, fabrication and characterization of GaAs Gunn diodes intended to be used in advanced driver assistance systems. The corresponding Gunn diode based oscillators operate at the microwave frequency of 77 GHz and deliver an output power up to 19.2 dBm (83.2 mW). To fulfill the high demands of the automotive industry, temperature stability and a high grade of frequency purity, the Gunn diode structure includes a hot electron injector. This is based on the heteroepitaxy of a graded gap AlxGa1-xAs layer and an adjacent thin highly doped GaAs layer. The hot electron injector properties are investigated using dc and rf electrical measurements, including the temperature influence as well. Specific production related data of the cavity oscillators using our Gunn diodes are presented. New alternatives, such as the resonant tunneling emitter as a hot electron injector and the Gunn diode based MMIC as oscillator, are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K. Ridley, T.B. Watkins, Proc. Phys. Soc. 78, 293 (1961)

    Article  Google Scholar 

  2. C. Hilsum, Proc. IRE 50, 185 (1962)

    Article  Google Scholar 

  3. J.B. Gunn, Solid State Commun. 1, 88 (1963)

    Article  ADS  Google Scholar 

  4. J.B. Gunn, IBM J. Res. Dev. 8, 141 (1964)

    Article  Google Scholar 

  5. H. Krömer, Proc. IEEE 52, 1736 (1964)

    Google Scholar 

  6. J.B. Gunn, In: Instabilities of Current and of Potential Distribution in GaAs and InP, Proc. Plasma Effects in Solids (Dunod, Paris, 1965) pp. 199–207

  7. A.R. Hutson, A. Jayaraman, A.G. Chynoweth, A.S. Coriell, W.L. Feldman, Phys. Rev. Lett. 14, 639 (1965)

    Article  ADS  Google Scholar 

  8. P.N. Butcher, Phys. Lett. 19, 546 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.A. Copeland, IEEE Trans. Electron. Dev. ED-13, 189 (1966)

    Google Scholar 

  10. J.G. Ruch, G.S. Kino, Appl. Phys. Lett. 10, 40 (1967)

    Article  ADS  Google Scholar 

  11. B.W. Hakki, J. Appl. Phys. 38, 808 (1967)

    Article  ADS  Google Scholar 

  12. J. Carroll, Hot Electron Microwave Generators (Edward Arnold, London, 1970)

    Google Scholar 

  13. H.L. Hartnagel, Gunn-Effect Logic Devices (American Elsevier, New york, 1971)

    Google Scholar 

  14. F. Sterzer, Proc. IEEE 59, 1155 (1971)

    Article  Google Scholar 

  15. K. Heime, Der Fernmeldeingenieur 25, 1 (1971)

    Google Scholar 

  16. P. Bulman, G.S. Hobson, B. Taylor, Transferred Electron Devices (Academic, London, New York, 1972)

    Google Scholar 

  17. G.S. Hobson, The Gunn Effect (Clarendon Press, Oxford, 1974)

    Google Scholar 

  18. B. Bosch, R. Engelmann, Gunn-Effect Electronics (Wiley, New York, 1975)

    Google Scholar 

  19. M.E. Levinstein, M.S. Shur, Solid State Electron. 18, 983 (1975)

    Article  ADS  Google Scholar 

  20. S. Neylon, S. Dale, H. Spooner, D. Worley, N. Couch, D. Knight, J. Ondria, IEEE 1989 MTT-S Int. Microwave Symp. Digest 1, 519 (1989)

  21. N.R. Couch, H. Spooner, P.H. Beton, M.J. Kelly, M.E. Lee, P.K. Rees, T.M. Kerr, IEEE Electron. Dev. Lett. 10, 288 (1989)

    Article  ADS  Google Scholar 

  22. H. Spooner, N. Couch, GEC J. Res. 7, 34 (1989)

    Google Scholar 

  23. J. Stock, PhD thesis, University of Aachen RWTH (2003)

  24. A. Paolella, R.L. Ross, J. Ondria, Microwave J. 29, 149 (1986)

    Google Scholar 

  25. N.R. Couch, P.H. Beton, M.J. Kelly, T.M. Kerr, D.J. Knight, J. Ondria, Solid State Electron. 31, 613 (1988)

    Article  ADS  Google Scholar 

  26. J.M. Szubert, J. Barstow, R.B. Beall, J.J. Harris, Solid State Electron. 33, 1035 (1990)

    Article  ADS  Google Scholar 

  27. S. Hutchinson, J. Stephens, M. Carr, M.J. Kelly, Electron. Lett. 32, 851 (1996)

    Article  Google Scholar 

  28. H. Eisele, Solid State Electron. 32, 253 (1989)

    Article  ADS  Google Scholar 

  29. R. Kamoua, H. Eisele, G.I. Haddad, Solid State Electron. 36, 1547 (1993)

    Article  ADS  Google Scholar 

  30. S.M. Sze, Modern Semiconductor Device Physics (Wiley, New York, 1998)

    Google Scholar 

  31. P.H. Beton, A.P. Long, N.R. Couch, M.J. Kelly, Electron. Lett. 24, 434 (1988)

    Article  ADS  Google Scholar 

  32. E.F. Schubert, J.B. Stark, T.H. Chiu, B. Tell, Appl. Phys. Lett. 53, 293 (1988)

    Article  ADS  Google Scholar 

  33. E.F. Schubert, C.W. Tu, R.F. Kopf, J.M. Kuo, L.M. Lunardi, Appl. Phys. Lett. 54, 2592 (1989)

    Article  ADS  Google Scholar 

  34. E.F. Schubert, J. Vac. Sci. Technol. A 8, 2980 (1990)

    Article  ADS  Google Scholar 

  35. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience, New York, 1981)

    Google Scholar 

  36. S. Montanari, A. Förster, M.I. Lepsa, H. Lüth, Solid State Electron. 49, 245 (2005)

    Article  ADS  Google Scholar 

  37. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  38. D.E. McCumber, A.G. Chynoweth, IEEE Trans. Electron. Dev. ED-13, 4 (1966)

    Google Scholar 

  39. T. Makino, Solid State Electron. 22, 761 (1979)

    Article  ADS  Google Scholar 

  40. SILVACO International, 4071 Patrick Henry Drive, Building 1, Santa Clara, CA 95054

  41. G. Hobson, Solid State Electron. 15, 1107 (1972)

    Article  ADS  Google Scholar 

  42. S. Montanari, PhD thesis, RWTH Aachen (2005)

  43. M. Tong, D.G. Ballegeer, A. Ketterson, E.J. Roan, K.Y. Cheng, I. Adesida, J. Electron Mater. 21, 9 (1992)

    ADS  Google Scholar 

  44. G.C. DeSalvo, W.F. Tseng, J. Comas, J. Electrochem. Soc. 139, 831 (1992)

    Article  Google Scholar 

  45. G. Franz, F. Rinner, J. Vac. Sci. Technol. A 17, 56 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Förster.

Additional information

PACS

85.30.-z; 73.40.-c; 07.57.Hm; 84.30.Ng; 85.30.Fg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, A., Lepsa, M., Freundt, D. et al. Hot electron injector Gunn diode for advanced driver assistance systems. Appl. Phys. A 87, 545–558 (2007). https://doi.org/10.1007/s00339-007-3872-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3872-5

Keywords

Navigation