Applied Physics A

, Volume 87, Issue 1, pp 27–30 | Cite as

Synthesis and structural characterization of the antiferroelectric lead zirconate nanotubes by pulsed laser deposition

Rapid communication

Abstract

For the first time, a pulsed laser ablation deposition (PLD) method has been employed for the synthesis of antiferroelectric lead zirconate, PbZrO3, (PZ) nanotubes within the pores of anodic aluminum oxide (AAO) templates. The structure and morphology of fabricated PZ nanotubes were characterized by number of techniques, including scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM)analysis. After postannealing at 650 °C, the PZ nanotubes exhibited a polycrystalline microstructure, and X-ray diffraction studies revealed that they are of an orthorhombic distorted perovskite crystal structure. TEM analysis confirmed that the obtained PZ nanotubes are composed of nanoparticles in the range of 3–7 nm and the thickness of the wall of the nanotubes is around 10 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991)CrossRefADSGoogle Scholar
  2. 2.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
  3. 3.
    G.R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Edit. 41, 2446 (2002)CrossRefGoogle Scholar
  4. 4.
    C.N.R. Rao, M. Nath, Dalton Trans. 1 (2003)Google Scholar
  5. 5.
    J. Junquera, P. Ghosez, Nature 422, 6931 (2003)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, J.J. Santiago-Aviles, Nanotechnology 15, 32 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, Appl. Phys. Lett. 83, 440 (2003)CrossRefADSGoogle Scholar
  8. 8.
    M.W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, U. Gosele, Nat. Mater. 3, 87 (2004)CrossRefADSGoogle Scholar
  9. 9.
    A. Roelofs, I. Schneller, K. Szot, R. Waser, Appl. Phys. Lett. 81, 5231 (2002)CrossRefADSGoogle Scholar
  10. 10.
    X.Y. Zhang, X. Zhao, C.W. Lai, J. Wang, X.G. Tang, J.Y. Dai, Appl. Phys. Lett. 85, 4190 (2004)CrossRefADSGoogle Scholar
  11. 11.
    B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Chem. Mater. 14, 480 (2002)CrossRefGoogle Scholar
  12. 12.
    X.Y. Zhang, X. Zhao, C.W. Lai, J. Wang, X.G. Tang, J.Y. Dai, Appl. Phys. Lett. 85, 4190 (2004)CrossRefADSGoogle Scholar
  13. 13.
    D.L. Polla, L.F. Francis, MRS Bull. 21, 59 (1996)Google Scholar
  14. 14.
    L.E. Cross, S. Trolier-McKinstry, Encycl. Appl. Phys. 21, 429 (1997)Google Scholar
  15. 15.
    D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)Google Scholar
  16. 16.
    M. Bognitzki, H. Haoqing, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J.H. Wendorff, A. Greiner, Adv. Mater. 12, 637 (2000)CrossRefGoogle Scholar
  17. 17.
    X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Dai, Appl. Phys. Lett. 85, 143102 (2005)CrossRefGoogle Scholar
  18. 18.
    M.C. Hsu, I.C. Leu, Y.M. Sun, M.H. Hon, J. Solid State Chem. 179, 1421 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations