Skip to main content

Advertisement

Log in

EELS plasmon studies of silver/carbon core/shell nanocables prepared by simple arc discharge

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A method for the fabrication of large quantities of high quality silver nanocables encapsulated in carbon nanotubes (Ag@C) using a hydrogen arc is presented. A growth mechanism based on the generation of poly-aromatic hydrocarbons by the hydrogen arc is proposed. The size-dependent electronic structures of the resultant materials are investigated using electron energy loss spectroscopy (EELS). The surface plasmon and bulk-excitation character observed by EELS are discussed. As the diameter of Ag@C nanocable decreases, the surface and bulk plasmons of the silver core shift to lower energy and the peaks broaden. Measurements of electrical conductivity exhibits a liner current–voltage character with a conductivity of 0.5×104 S/cm for the nanocable structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  3. Y. Feldman, E. Wasserman, D.J. Srolovitt, R. Tenne, Science 267, 222 (1995)

    Article  ADS  Google Scholar 

  4. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Nature 385, 878 (1998)

    Article  ADS  Google Scholar 

  5. S.W. Chung, J.Y. Yu, J.R. Heath, Appl. Phys. Lett. 76, 2068 (2000)

    Article  ADS  Google Scholar 

  6. C. Dekker, Phys. Today 52, 22 (1999)

    Google Scholar 

  7. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)

    Article  ADS  Google Scholar 

  8. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  9. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001)

    Article  ADS  Google Scholar 

  10. B.H. Hong, S.C. Bae, C.W. Lee, S. Jeong, K.S. Kim, Science 294, 348 (2001)

    Article  ADS  Google Scholar 

  11. B.H. Hong, J.Y. Lee, C.W. Lee, J.C. Kim, S.C. Bae, K.S. Kim, J. Am. Chem. Soc. 123, 10748 (2001)

    Article  Google Scholar 

  12. C.H. Ye, G.W. Meng, Z. Jiang, G.Z. Wang, L.D. Zhang, J. Am. Chem. Soc. 124, 15180 (2002)

    Article  Google Scholar 

  13. Z.L. Wang, Adv. Mater. 12, 1295 (2000)

    Article  Google Scholar 

  14. S.B. Suh, B.H. Hong, P. Tarakeshwar, S.J. Youn, S. Jeong, K.S. Kim, Phys. Rev. B 67, 241402(R) (2003)

  15. Y.W. Wang, G.W. Meng, L.D. Zhang, C.H. Liang, J. Zhang, Chem. Mater. 14, 1773 (2002)

    Article  Google Scholar 

  16. T. Nautiyal, T.H. Rho, K.S. Kim, Phys. Rev. B 69, 193404 (2004)

    Article  ADS  Google Scholar 

  17. Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, Phys. Rev. B 61, 4850 (2000)

    Article  ADS  Google Scholar 

  18. M. Bockrath, W. Liang, D. Bozovic, J.H. Hafner, C.M. Lieber, M. Tinkham, H. Park, Science 291, 283 (2001)

    Article  ADS  Google Scholar 

  19. F. Carmona, F. Barreau, P. Delhaes, R. Canet, J. Phys. Lett. 41, L-531 (1980)

    Google Scholar 

  20. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996)

    Google Scholar 

  21. J.J. Davis, M.L.H. Green, H.A.O. Hill, Y.C. Leung, P.J. Sadler, J. Sloan, A.V. Xavier, S.C. Tsang, Inorg. Chim. Acta 272, 261 (1997)

    Article  Google Scholar 

  22. S.S. Wong, E. Joselevich, A.T. Woolley, C.C. Cheung, C.M. Lieber, Nature 394, 52 (1998)

    Article  ADS  Google Scholar 

  23. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 284, 1340 (1999)

    Article  ADS  Google Scholar 

  24. M.P. Mattson, R.C. Haddon, A.M. Rao, J. Mol. Neurosci. 14, 175 (2000)

    Article  Google Scholar 

  25. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Appl. Phys. Lett. 73, 2447 (1998)

    Article  ADS  Google Scholar 

  26. Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 72, 2912 (1998)

    Article  ADS  Google Scholar 

  27. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kinag, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997)

    Article  ADS  Google Scholar 

  28. H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384, 147 (1996)

    Article  ADS  Google Scholar 

  29. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000)

    Article  ADS  Google Scholar 

  30. T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992)

    Article  ADS  Google Scholar 

  31. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smally, Chem. Phys. Lett. 243, 49 (1995)

    Article  Google Scholar 

  32. L. Kong, A.M. Cassell, H.J. Dai, Chem. Phys. Lett. 292, 567 (1998)

    Article  Google Scholar 

  33. P.M. Ajayan, C. Colliex, J.M. Lambert, P. Bernier, L. Barbedette, M. Tencé, O. Stephan, Phys. Rev. Lett. 72, 1722 (1994)

    Article  ADS  Google Scholar 

  34. C. Guerret-Piécourt, Y. Le Bouar, A. Loiseau, H. Pascard, Nature 372, 761 (1994)

    Article  ADS  Google Scholar 

  35. A. Loiseau, H. Pascard, Chem. Phys. Lett. 256, 246 (1996)

    Article  Google Scholar 

  36. A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, R.P.H. Chang, Appl. Phys. Lett. 69, 345 (1996)

    Article  ADS  Google Scholar 

  37. J.Y. Dai, J.M. Lauerhaas, A.A. Setlur, R.P.H. Chang, Chem. Phys. Lett. 258, 547 (1996)

    Article  Google Scholar 

  38. D. Ugarte, A. Châtelain, W.A. de Heer, Science 274, 1897 (1996)

    Article  ADS  Google Scholar 

  39. J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green, Chem. Commun. 699 (1999)

  40. A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Chem. Mater. 12, 202 (2000)

    Article  Google Scholar 

  41. X. Sun, Y. Li, Adv. Mater. 17, 2626 (2005)

    Article  Google Scholar 

  42. X.K. Wang, X.W. Lin, M. Mesleh, M.F. Jarrold, V.P. Dravid, J.B. Ketterson, R.P.H. Chang, J. Mater. Res. 10, 1 (1995)

    MATH  Google Scholar 

  43. J.M.E. Harper, C. Cabral Jr., P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, C.K.J. Hu, Appl. Phys. 86, 2516 (1999)

    Article  Google Scholar 

  44. G. Riveros, H. Gómez, A. Cortes, R.E. Marotti, E.A. Dalchiele, Appl. Phys. A 81, 17 (2005)

    Article  ADS  Google Scholar 

  45. J. Diao, K. Gall, M.L. Dunn, Phys. Rev. B 70, 075423 (2004)

    Article  ADS  Google Scholar 

  46. Y. Zhang, K. Suenaga, S. Colliex, S. Iijima, Science 281, 973 (1998)

    Article  ADS  Google Scholar 

  47. A. Oya, S. Otani, Carbon 17, 131 (1979)

    Article  Google Scholar 

  48. T.Y. Kosolapova, Carbides: Properties, Production and Applications (Plenium, New York, 1971)

    Google Scholar 

  49. R.C. Weast (Ed.), CRC Handbook of Chemistry and Physics (CRC, Boca Raton, Florida, 1981), p. F-23, 62nd edn.

  50. E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Science 265, 1850 (1994)

    Article  ADS  Google Scholar 

  51. H. Seiler, U. Hass, B. Ocker, K.H. Körtje, Faraday Discuss. 92, 121 (1991)

    Article  Google Scholar 

  52. D.J. Ding, H.M. Li, Q.R. Pu, Z.M. Zhang, Phys. Rev. B 66, 085411 (2002)

    Article  ADS  Google Scholar 

  53. C.C. Ann, O.L.K. Krivanek, R.P. Burgner, P.R. Swann, EELS Atlas (Gatan, Warrendale, 1983)

    Google Scholar 

  54. Z.S. Wronski, G.J. Carpenter, Carbon 44, 1779 (2006)

    Article  Google Scholar 

  55. D.J. Ding, H.M. Li, Q.R. Pu, Z.M. Zhang, Phys. Rev. B 66, 085411 (2002)

    Article  ADS  Google Scholar 

  56. Z.S. Wronski, G.J. Carpenter, Carbon 44, 1779 (2006)

    Article  Google Scholar 

  57. Y.W. Wang, B.H. Hong, J.Y. Lee, J.S. Kim, G.H. Kim, K.S. Kim, J. Phys. Chem. B 108, 16723 (2004)

    Article  Google Scholar 

  58. J. Wang, X. An, Q. Li, R.F. Egerton, Appl. Phys. Lett. 86, 201911 (2005)

    Article  ADS  Google Scholar 

  59. S. Hussain, R.K. Roy, A.K. Pal, J. Phys. D Appl. Phys. 38, 900 (2005)

    Article  ADS  Google Scholar 

  60. T. Stöckli, J.M. Bonard, P.A. Stadelmann, A. Châtelain, Z. Phys. D 40, 425 (1997)

    Article  Google Scholar 

  61. J.M. Oliva, S.K. Gray, Chem. Phys. Lett. 379, 325 (2003)

    Article  Google Scholar 

  62. B.W. Reed, J.M. Chen, N.C. MacDonald, J. Silcox, G.F. Bertsch, Phys. Rev. B 60, 5641 (1999)

    Article  ADS  Google Scholar 

  63. Y. Sun, Y. Yin, B.T. Mayer, T. Herricks, Y. Xia, Chem. Mater. 14, 4736 (2002)

    Article  Google Scholar 

  64. Q. Chen, S. Wang, L.M. Peng, Nanotechnology 17, 1087 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.P.H. Chang.

Additional information

PACS

81.05.Tp; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Buchholz, D., Li, Y. et al. EELS plasmon studies of silver/carbon core/shell nanocables prepared by simple arc discharge. Appl. Phys. A 87, 1–6 (2007). https://doi.org/10.1007/s00339-006-3859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3859-7

Keywords

Navigation