Skip to main content
Log in

Chemical tension and global equilibrium in VLS nanostructure growth process: from nanohillocks to nanowires

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We formulate a global equilibrium model to describe the growth of one-dimensional nanostructures in the VLS process by including also the chemical tension in addition to the physical tensions, i.e. surface energies. The chemical tension derives from the Gibbs free energy change due to the growth of a crystal layer of an elementary thickness. The system global equilibrium is arrived at via the balance of the static physical tensions and the dynamic chemical tension. The model predicts and provides conditions for the growth of nanowires of all sizes exceeding a lower thermodynamic limit. The model also predicts the conditions distinguishing the growth of nanohillocks from nanowires. These predictions will allow the verification of the model by future experiments specifically designed for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    Article  ADS  Google Scholar 

  2. N. Wang, Y.H. Tang, Y.F. Zhang, C.S. Lee, S.T. Lee, Phys. Rev. B 58, R16024 (1998)

    Article  ADS  Google Scholar 

  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1899 (2001)

    Article  ADS  Google Scholar 

  4. Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Mater. 13, 9 (2003)

    Article  Google Scholar 

  5. Y. Xia, P. Yang (eds.), Spec. Issue: One-dimensional nanoscale devices. Adv. Mater. 15 (2003)

  6. L. Samulson, Mater. Today 6, 22 (2003)

    Article  Google Scholar 

  7. H.J. Fan, P. Werner, M. Zacharias, Small 2, 700 (2006)

    Article  Google Scholar 

  8. J. Xing, W. Lu, Y.J. Hu, H. Yan, C.M. Lieber, Nature 441, 489 (2006)

    Article  ADS  Google Scholar 

  9. V. Schmidt, S. Senz, U. Gösele, Appl. Phys. A 80, 445 (2005)

    Article  ADS  Google Scholar 

  10. E.I. Givargizov, Highly Anisotropic Crystals (Reidel, Boston, 1987), Chap. 2

  11. S. Dietrich, private communication

  12. J.W. Gibbs, The Collected Works of J. Willard Gibbs (Longmans, Green, New York, 1928), p. 290 and the associated materials

  13. L. Guzzardi, R. Rosso, E.G. Virga, Phys. Rev. E 73, 021602 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. T.Y. Tan, N. Li, U. Gösele, Appl. Phys. Lett. 83, 1199 (2003)

    Article  ADS  Google Scholar 

  15. T.Y. Tan, N. Li, U. Gösele, Appl. Phys. A 78, 519 (2004)

    Article  ADS  Google Scholar 

  16. P. Chen, J. Gaydos, A.W. Neumann, Langmuir 12, 5956 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.Y. Tan.

Additional information

PACS

81.07.-b; 82.60.-s; 05.70.Np; 68.35.Md; 68.03.Cd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Tan, T. & Gösele, U. Chemical tension and global equilibrium in VLS nanostructure growth process: from nanohillocks to nanowires. Appl. Phys. A 86, 433–440 (2007). https://doi.org/10.1007/s00339-006-3809-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3809-4

Keywords

Navigation