Skip to main content

Advertisement

Log in

Carbon nanostructures grown with electron and ion beam methods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a comparative study where carbon nanostructures were prepared by electron and ion beam methods. Thin films of 10×10 μm2 area were prepared and analysed by Raman analysis, nanoindentation, energy dispersive X-ray analysis (EDX) and atomic force microscopy (AFM). The material formed is not soft and graphitic, but of intermediate hardness (6–13 GPa) and with Raman spectral features similar to those of hydrogenated amorphous carbon, although it contains a significant Ga content (up to 25 at. %). This study was used to form sharp AFM supertip structures which were used to image sintered ceramic samples and films of aligned carbon nanotubes. Compared to traditional Si tips, this gave an improved rendering of the sample’s aspect ratio although the resolution is limited by the diameter of the C supertips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.R. Cho, Y.R. Lee, Y.H. Song, S.Y. Kang, C.S. Hwang, M.Y. Jung, D.H. Kim, S.K. Lee, H.S. Uhm, K.I. Cho, Mater. Sci. Eng. B 79, 128 (2001)

    Article  Google Scholar 

  2. A.V. Melechko, V.I. Nerkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Appl. Phys. Rev. 97, 41301 (2005)

    Article  Google Scholar 

  3. R.W. Lamberton, S.M. Morley, P.D. Maguire, J.A. McLaughlin, Thin Solid Films 333, 114 (1998)

    Article  Google Scholar 

  4. N.A. Marks, J.M. Bell, G.K. Pearce, D.R. McKenzie, M.M.M. Bilek, Diam. Relat. Mater. 12, 2003 (2003)

    Article  Google Scholar 

  5. J. Taniguch, I. Miyamoto, N. Ohno, S. Honda, Nucl. Instrum. Methods Phys. Res. B 121, 507 (1997)

    Article  ADS  Google Scholar 

  6. M. Komuro, H. Hiroshima, Microelectron. Eng. 35, 273 (1997)

    Article  Google Scholar 

  7. M. Castagne, M. Benfedda, S. Lahimer, P. Falgayrettes, J.P. Fillard, Ultramicroscopy 76, 187 (1999)

    Article  Google Scholar 

  8. T. Djenizian, L. Santinacci, H. Hildebrand P. Schmuki, Surf. Sci. 524, 40 (2003)

    Article  Google Scholar 

  9. P. Lemoine, J.P. Quinn, P.P. Papakonstantinou, P.D. Maguire, J.A. McLaughlin, Improved Carbon Materials for Nano-manufacturing Applications, in: CRC Handbook of Nanomanufacturing, ed. by A. Bushnaina (Taylor and Francis, New York, 2006)

  10. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    ADS  Google Scholar 

  11. A.K. Bhattacharya, W.D. Nix, Int. J. Solid Struct. 24, 1287 (1988)

    Article  Google Scholar 

  12. W. Ding, D.A. Dikin, X. Chen, R.D. Piner, R.S. Ruoff, E. Zussman, X. Wang, X. Li, J. Appl. Phys. 98, 14905 (2005)

    Article  ADS  Google Scholar 

  13. M. Amman, J.W. Sleight, D.R. Lombardi, R.E. Welser, M.R. Despande, M.A. Reed, L.J. Guido, J. Vac. Sci. Technol. B 14, 54 (1996)

    Article  Google Scholar 

  14. K. Ohya, T. Ishitani, Nucl. Instrum. Methods Phys. Res. B 202, 305 (2003)

    Article  ADS  Google Scholar 

  15. P. Lemoine, R.W. Lamberton, A.A. Ogwu, J.F. Zhao, P. Maguire, J. McLaughlin, J. Appl. Phys. 86, 6564 (1999)

    Article  ADS  Google Scholar 

  16. A. Stanishevsky, L. Khriachtchev, J. Appl. Phys. 86, 7052 (1999)

    Article  ADS  Google Scholar 

  17. G. Bhimarasetti, J.M. Cowley, M. K Sunkara, Nanotechnology 16, S362 (2005)

    Article  ADS  Google Scholar 

  18. Y. Gao, Y. Bando, Nature 415, 599 (2002)

    Article  Google Scholar 

  19. C. Park, J.H. Kim, D. Yoon, S. Han, C. Doh, S. Yeo, K.H. Lee, T.J. Andersonc, J. Electrochem. Soc. 152, 298 (2005)

    Article  Google Scholar 

  20. W. Jakob, Thin Solid Films 326, 1 (1998)

    Article  Google Scholar 

  21. P. Lemoine, J.P. Quinn, P.D. Maguire, P.P. Papakonstantinou, N. Dougan, Thin Solid Films 514, 223 (2006)

    Article  Google Scholar 

  22. J.P. Salvetat, J.M. Onard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Appl. Phys. A 69, 255 (1999)

    Article  ADS  Google Scholar 

  23. Y. Akama, E. Mishimura, A. Sakai, H. Murakami, J. Vac. Sci. Technol. A 8, 429 (1990)

    Article  ADS  Google Scholar 

  24. M. Wendel, H. Lorenz, J.P. Kotthaus, Appl. Phys. Lett. 67, 3732 (1995)

    Article  ADS  Google Scholar 

  25. M. Yamaki, T. Miwa, H. Yoshimura, K. Nagayama, J. Vac. Sci. Technol. B 10, 2447 (1992)

    Article  Google Scholar 

  26. F. Zenhausern, M. Adrian, B. ten Heggeler-Bordier, F. Ardizzoni, P. Descouts, J. Appl. Phys. 73, 7232 (1993)

    Article  ADS  Google Scholar 

  27. H.Y. Yap, B. Ramaker, A.V. Sumant, R.W. Carpick, Diam. Relat. Mater. 15, 1622 (2006)

    Article  Google Scholar 

  28. B. Kim, W.M. Sigmund, Colloid Surf. A: Physicochem. Eng. Aspects 266, 91 (2005)

    Article  Google Scholar 

  29. X. Nan, Z. Gu, Z. Liu, J. Colloid Interf. Sci. 245, 311 (2002)

    Article  Google Scholar 

  30. N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit, Microelectron. Eng. 61–62, 693 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lemoine.

Additional information

PACS

81.05.Uw; 81.07.-b; 78.30.-j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemoine, P., Roy, S., Quinn, J. et al. Carbon nanostructures grown with electron and ion beam methods. Appl. Phys. A 86, 451–456 (2007). https://doi.org/10.1007/s00339-006-3806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3806-7

Keywords

Navigation