Skip to main content
Log in

One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bundles of high-aspect-ratio single-crystalline ZnO nanowires were fabricated by a single-step mild hydrothermal condition without the use of a seeding layer, thus eliminating an annealing step. The growth yields nanowires of high aspect ratio (>200). No significant lateral growth takes place with prolonged reaction time. The morphology and aspect ratio of the final products depend on the concentration of the precursors; a highly water-soluble tetradentate cyclic tertiary amine and zinc nitrate system. The nanowires grow along the [0001] direction and have an average width of <10 nm and a narrow distribution of ±5 nm. Photoluminescence measurements of the ultra-thin nanowires exhibit a strong band-edge emission at room temperature. The highly crystalline sub tens of nanometer scale diameter nanowires can, in combination, be a good one-dimensional candidate to study optical and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, Phys. Rev. B 65, 161205 (2002)

    Article  ADS  Google Scholar 

  2. M. Law, L. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  ADS  Google Scholar 

  3. T. Minami, J. Vac. Sci. Technol. A 17, 1765 (1999)

    Article  ADS  Google Scholar 

  4. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)

    Article  ADS  Google Scholar 

  5. C.M. Mo, Y.H. Li, Y.S. Lin, Y. Zhang, L.P. Zhang, J. Appl. Phys. 83, 4389 (1998)

    Article  ADS  Google Scholar 

  6. P.X. Gao, Z.L. Wang, Small 1, 945 (2005)

    Article  MathSciNet  Google Scholar 

  7. J.J. Wu, S.C. Liu, Adv. Mater. 14, 215 (2002)

    Article  MathSciNet  Google Scholar 

  8. B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, Appl. Phys. Lett. 83, 1635 (2003)

    Article  ADS  Google Scholar 

  9. J. Zhang, L. Sun, H. Pan, C. Liao, C. Yan, New J. Chem. 26, 33 (2002)

    Article  Google Scholar 

  10. B. Cheng, W. Shi, J.M. Russell-Tanner, L. Zhang, E.T. Samulski, Inorg. Chem. 45, 1208 (2006)

    Article  Google Scholar 

  11. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Edit. 41, 1188 (2002)

    Article  Google Scholar 

  12. L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    Article  Google Scholar 

  13. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Chem. Mater. 13, 4395 (2001)

    Article  Google Scholar 

  14. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  15. M. Guo, P. Diao, S. Cai, J. Solid State Chem. 178, 1864 (2005)

    Article  ADS  Google Scholar 

  16. K. Govender, D.S. Boyle, P. O’Brien, D. Brinks, D. West, D. Coleman, Adv. Mater. 14, 1221 (2002)

    Article  Google Scholar 

  17. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Edit. 42, 3131 (2003)

    Article  Google Scholar 

  18. A. Sagunan, H.C. Warad, M. Boman, J. Dutta, J. Sol-Gel Sci. Technol., published online 11 May 2006

  19. D. Wang, C. Song, J. Phys. Chem. B 109, 12697 (2005)

    Article  Google Scholar 

  20. K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575 (2004)

    Article  Google Scholar 

  21. W.J. Li, E.W. Shi, W.G. Zhong, Z.W. Yin, J. Cryst. Growth 203, 186 (1999)

    Article  Google Scholar 

  22. X. Gao, X. Li, W. Yu, J. Phys. Chem. B 109, 1155 (2005)

    Article  Google Scholar 

  23. H.S. Qian, S.H. Yu, J.Y. Gong, L.B. Luo, L.L. Wen, Cryst. Growth Des. 5, 935 (2005)

    Article  Google Scholar 

  24. Y.R. Lin, S.S. Yang, S.Y. Tsai, H.C. Hsu, S.T. Wu, I.C. Chen, Cryst. Growth Des. 6, 1951 (2006)

    Article  Google Scholar 

  25. D.A. Lucca, D.W. Hamby, M.J. Klopfstein, G. Cantwell, Phys. Stat. Solidi B 229, 845 (2002)

    Article  Google Scholar 

  26. W. Shan, W. Walukiewicz, J.W. Ager III, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett. 86, 191911 (2005)

    Article  ADS  Google Scholar 

  27. X. Wang, Y. Ding, C.J. Summers, Z.L. Wang, J. Phys. Chem. B 108, 8773 (2004)

    Article  Google Scholar 

  28. M. Koyano, P. Quocbao, L.T. Thanhbinh, L. Hongha, N. Ngoclong, S. Katayama, Phys. Stat. Solidi A 193, 125 (2002)

    Article  ADS  Google Scholar 

  29. M. Gomi, N. Oohira, K. Ozaki, M. Koyano, Japan. J. Appl. Phys. 42, 481 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.W. Ho.

Additional information

PACS

81.16.Be; 81.07.Bc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, G., Wong, A. One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires. Appl. Phys. A 86, 457–462 (2007). https://doi.org/10.1007/s00339-006-3798-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3798-3

Keywords

Navigation