Skip to main content
Log in

Intervalley scattering in GaAs: ab initio calculation of the effective parameters for Monte Carlo simulations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Interactions between excited electrons and short-wavelength (intervalley) phonons in GaAs are studied using density functional theory for the conduction bands, and density functional perturbation theory for phonon frequencies and matrix elements of the electron–phonon interaction. We have calculated the deformation potentials (DPs) and the average intervalley scattering time 〈τ〉. The integration of the scattering probabilities over all possible final states in the Brillouin zone has been performed without any ad hoc assumption about the behavior of the electron–phonon matrix elements nor the topology of the conduction band. For transitions from the L point to Γ valley (within the first conduction band), we find 〈τ〉L to be 1.5 ps at 300 K, in good agreement with time-resolved photoluminescence experiment. We discuss the difference between our calculated DPs, and effective parameters used in Monte Carlo simulations of optical and transport properties of semiconductors. The latter are based on Conwell’s model, in which electron–phonon interaction is described by one single constant and a parabolic model is used for conduction bands. We deduce the effective DP from our 〈τ〉, and compare it to our calculated DPs. We conclude that only effective DPs obtained from a full calculation of 〈τ〉 are relevant parameters for Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zollner, M. Garriga, J. Kircher, J. Humlíček, M. Cardona, Phys. Rev. B 48, 7915 (1993)

    Article  ADS  Google Scholar 

  2. A.R. Goñi, A. Cantarero, K. Syassen, M. Cardona, Phys. Rev. B 41, 10111 (1990)

    Article  ADS  Google Scholar 

  3. D. Lüerßen, R. Blener, H. Kalt, Phys. Rev. B 61, 15812 (2000)

    Article  ADS  Google Scholar 

  4. B. Gunn, Solid State Commun. 1, 88 (1963)

    Article  Google Scholar 

  5. J. Pernot, W. Zawadzki, S. Contreras, J.L. Robert, E. Neyret, L. Di Cioccio, J. Appl. Phys. 90, 1869 (2001)

    Article  ADS  Google Scholar 

  6. J. Shah, B. Deveaud, T.C. Damen, W.T. Tsang, A.C. Gossard, P. Lugli, Phys. Rev. Lett. 59, 2222 (1987)

    Article  ADS  Google Scholar 

  7. A. Katz, R.R. Alfano, Appl. Phys. Lett. 53, 1065 (1988)

    Article  ADS  Google Scholar 

  8. S. Guha, Q. Cai, M. Chandrasekhar, H.R. Chandrasekhar, H. Kim, A.D. Alvarenga, R. Vogelgesang, A.K. Ramdas, M.R. Melloch, Phys. Rev. B 58, 7222 (1998)

    Article  ADS  Google Scholar 

  9. D. Kim, P.Y. Yu, Phys. Rev. B 43, 4158 (1991)

    Article  ADS  Google Scholar 

  10. J.A. Kash, Phys. Rev. B 47, 1221 (1993)

    Article  ADS  Google Scholar 

  11. M. Prinnila, P. Kivinen, A. Savin, P. Törmä, J. Ahopelto, Phys. Rev. Lett. 95, 206602 (2005)

    Article  ADS  Google Scholar 

  12. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

    Article  ADS  Google Scholar 

  13. S.N. Grinyaev, G.F. Karavaev, V.G. Tyuterev, Sov. Phys. Semicond. 23, 905 (1989)

    Google Scholar 

  14. J.-Q. Wang, Z.-Q. Gu, M.-F. Li, W.-Y. Lai, Phys. Rev. B 46, 12358 (1992)

    Article  ADS  Google Scholar 

  15. S. Krishnamurthy, M. Cardona, J. Appl. Phys. 74, 2117 (1993)

    Article  ADS  Google Scholar 

  16. S. Zollner, S. Gopalan, M. Cardona, J. Appl. Phys. 68, 1682 (1990)

    Article  ADS  Google Scholar 

  17. S. Zollner, S. Gopalan, M. Cardona, Semicond. Sci. Technol. B 7, 137 (1992)

    Article  Google Scholar 

  18. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. W. Kohn, L. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Zollner, S. Gopalan, M. Cardona, Solid State Commun. 76, 877 (1990)

    Article  Google Scholar 

  21. S. Zollner, J. Kircher, M. Cardona, S. Gopalan, Solid State Electron. 32, 1585 (1989)

    Article  Google Scholar 

  22. S. Baroni, S. de Gironcoli, A.D. Corso, P. Gianozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  23. E.M. Conwell, High Field Transport in Semiconductors (Academic Press, New York, 1967)

    Google Scholar 

  24. J.L. Birman, M. Lax, R. Loudon, Phys. Rev. 145, 620 (1966)

    Article  ADS  Google Scholar 

  25. J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C: Solid State Phys. 12, 4409 (1979)

    Article  ADS  Google Scholar 

  26. S. Botti, N. Vast, L. Reining, V. Olevano, L. Andreani, Phys. Rev. Lett. 89, 216803 (2002)

    Article  ADS  Google Scholar 

  27. S. Botti, N. Vast, L. Reining, V. Olevano, L. Andreani, Phys. Rev. B 70, 045301 (2004)

    Article  ADS  Google Scholar 

  28. J. Sjakste, V. Tyuterev, N. Vast, Phys. Rev. B 74 (2006), to be published

  29. H. Monkhorst, J. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Adachi, GaAs and Related Materials (World Scientific, Singapore, 1994)

    Google Scholar 

  31. A.R. Goñi, K. Strössner, K. Syassen, M. Cardona, Phys. Rev. B 36, 1581 (1987)

    Article  ADS  Google Scholar 

  32. D.E. Aspnes, C.G. Olson, D.W. Lynch, Phys. Rev. Lett. 37, 766 (1976)

    Article  ADS  Google Scholar 

  33. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 35, 4170 (1987)

    Article  ADS  Google Scholar 

  34. For detailed discussion of the quality of the conduction band description, see [28]

  35. D. Strauch, B. Dorner, J. Phys. Condens. Matter 2, 1457 (1990)

    Article  ADS  Google Scholar 

  36. P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Phys. Rev. B 43, 7231 (1991)

    Article  ADS  Google Scholar 

  37. S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, http://www.pwscf.org/

  38. F. Mauri, O. Zakharov, S. de Gironcoli, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 77, 1151 (1996)

    Article  ADS  Google Scholar 

  39. P.B. Allen, M. Cardona, Phys. Rev. B 23, 1495 (1981)

    Article  ADS  Google Scholar 

  40. L.N. Nikitina, S.N. Grinyaev, V.G. Tyuterev, Solid State Phys. (Russia) 48, 120 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sjakste.

Additional information

PACS

71.10-w; 72.10.Di; 71.55.Eq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjakste, J., Tyuterev, V. & Vast, N. Intervalley scattering in GaAs: ab initio calculation of the effective parameters for Monte Carlo simulations. Appl. Phys. A 86, 301–307 (2007). https://doi.org/10.1007/s00339-006-3786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3786-7

Keywords

Navigation