Applied Physics A

, Volume 86, Issue 3, pp 329–334 | Cite as

Material processing with pulsed radially and azimuthally polarized laser radiation

  • M. MeierEmail author
  • V. Romano
  • T. Feurer


We report on the generation of radially and azimuthally polarized Q-switched laser radiation and its application in material processing. The power levels were sufficiently high to study micro-hole drilling in different metals. Depending on the optical properties of the metal, either radial or azimuthal polarization shows the best efficiency and the effect is attributed to waveguiding. For steel, a comparison to linearly or circularly polarized laser radiation indicates that the doughnut-shaped beam with azimuthal polarization is the most energy-efficient in producing holes of the same diameter and depth.


Mild Steel Laser Shot Faraday Rotator Ablation Rate Material Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.G. Niziev, A.V. Nesterov, J. Phys. D 32, 1455 (1999)CrossRefADSGoogle Scholar
  2. 2.
    C. Varin, M. Piché, M.A. Porras, Phys. Rev. E 71, 026603 (2005)CrossRefADSGoogle Scholar
  3. 3.
    R. Dorn, S. Quabis, G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003)CrossRefADSGoogle Scholar
  4. 4.
    Q. Zhan, Opt. Express 12, 3377 (2004)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    S.C. Tidwell, G.H. Kim, W.D. Kimura, Appl. Opt. 32, 5222 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Mushiake, K. Matsumura, N. Nakajima, Proc. IEEE 60, 1107 (1972)CrossRefGoogle Scholar
  7. 7.
    C.-C. Shih, Proc. SPIE 2889, 410 (1996)CrossRefADSGoogle Scholar
  8. 8.
    D. Pohl, Appl. Phys. Lett. 20, 266 (1972)CrossRefADSGoogle Scholar
  9. 9.
    A.V. Nesterov, V.G. Niziev, V.P. Yakunin, J. Phys. D 32, 2871 (1999)CrossRefADSGoogle Scholar
  10. 10.
    I. Moshe, S. Jackel, A. Meir, Opt. Lett. 28, 807 (2003)CrossRefADSGoogle Scholar
  11. 11.
    M. Roth, E. Wyss, H. Glur, H.P. Weber, Opt. Lett. 30, 1665 (2005)CrossRefADSGoogle Scholar
  12. 12.
    T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M.A. Ahmed, T. Graf, Appl. Phys. B 80, 707 (2005)CrossRefADSGoogle Scholar
  13. 13.
    J.-F. Bisson, J. Li, K. Ueda, Y. Senatsky, Opt. Express 14, 3304 (2006)CrossRefADSGoogle Scholar
  14. 14.
    D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin Heidelberg New York, 2000)Google Scholar
  15. 15.
    W.M. Steen, K. Watkins, Laser Material Processing, 3rd edn. (Springer, Berlin Heidelberg New York, 2003)Google Scholar
  16. 16.
    H. Ki, P.S. Mohanty, J. Mazumder, J. Laser Appl. 14, 39 (2002)CrossRefADSGoogle Scholar
  17. 17.
    T.V. Kononenko, V.I. Konov, S.V. Garnov, S.M. Klimentov, F. Dausinger, Laser Phys. 11, 343 (2001)Google Scholar
  18. 18.
    J.F. Ready, Industrial Applications of Lasers, 2nd edn. (Academic Press, San Diego, CA, 1997)Google Scholar
  19. 19.
    M.F. Modest, ASME J. Heat Transf. 128, 653 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Meier, H. Glur, E. Wyss, T. Feurer, V. Romano, Proc. SPIE 6053, 312 (2005)Google Scholar
  21. 21.
    R.J. Freiberg, A.S. Halsted, Appl. Opt. 8, 355 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    S.V. Govorkov, E.V. Slobodtchikov, A.O. Wiessner, D. Basting, Lambda Phys. Highlights 57, 3 (2000)Google Scholar
  23. 23.
    J.M. Lee, K.G. Watkins, W.M. Steen, J. Manuf. Sci. Eng. 123, 521 (2001)CrossRefGoogle Scholar
  24. 24.
    P. Mottner, Fraunhofer ISC Ann. Report (2004), pp. 28–29Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland

Personalised recommendations