Skip to main content
Log in

Electron–phonon induced conductance gaps in carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work presents a theoretical study of quantum charge transport through zigzag and armchair carbon nanotubes in the presence of electron–phonon interaction. By using a non-perturbative description of the electron–phonon coupling in Fock space, one reveals the occurrence of a transmission gap opening at half the optical A1(L) phonon energy, \(\hbar\omega_{0}/2\), above (below) the charge neutrality point associated with phonon emission (absorption). This mechanism, which is prevented at low bias voltages by Pauli blocking, develops when the system is driven out of equilibrium (high bias voltages). This yields an onset of current saturation of about 30 μA, which brings a completely novel perspective to understand electrical characteristics of nanotube-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.F. Smalley, Nature (London) 318, 62 (1985)

    Article  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  3. A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  4. C.T. White, T.N. Todorov, Nature 393, 240 (1998)

    Article  ADS  Google Scholar 

  5. J.W. Mintmire, C.T. White, Nature 394, 29 (1998)

    Article  ADS  Google Scholar 

  6. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  ADS  Google Scholar 

  7. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992)

    Article  ADS  Google Scholar 

  8. K. Harigaya, M. Fujita, Phys. Rev. B 47, 16563 (1993)

    Article  ADS  Google Scholar 

  9. A. Sedeki, L.G. Caron, C. Bourbonnais, Phys. Rev. B 62, 6975 (2000)

    Article  ADS  Google Scholar 

  10. M.T. Figge, M. Mostovoy, J. Knoester, Phys. Rev. Lett. 86, 4572 (2001)

    Article  ADS  Google Scholar 

  11. D. Connétable, G.M. Rignanese, J.C. Charlier, X. Blase, Phys. Rev. Lett. 94, 015503 (2005)

    Article  ADS  Google Scholar 

  12. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Google Scholar 

  13. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. Rev. Lett. 92, 106804 (2004)

    Article  ADS  Google Scholar 

  14. J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, P. Brouwer, P.L. McEuen, Nano Lett. 4, 517 (2004)

    Article  Google Scholar 

  15. M. Bockrath, D.H. Cobden, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397, 598 (1999)

    Article  ADS  Google Scholar 

  16. F. Triozon, S. Roche, A. Rubio, D. Mayou, Phys. Rev. B 69, 121410 (2004)

    Article  ADS  Google Scholar 

  17. S. Latil, S. Roche, D. Mayou, J.C. Charlier, Phys. Rev. Lett. 92, 256805 (2004)

    Article  ADS  Google Scholar 

  18. J.C. Gómez-Navarro, P.J. De Pablo, J. Gomez-Herrero, B. Biel, F.J. Garcia-Vidal, A. Rubio, F. Flores, Nature Mater. 4, 534 (2005)

    Article  ADS  Google Scholar 

  19. S. Latil, F. Triozon, S. Roche, Phys. Rev. Lett. 95, 126802 (2005)

    Article  ADS  Google Scholar 

  20. Z. Yao, C.L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000)

    Article  ADS  Google Scholar 

  21. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai, Phys. Rev. Lett. 95, 155505 (2005)

    Article  ADS  Google Scholar 

  22. J. Appenzeller, J. Knoch, M. Radosavljević, Ph. Avouris, Phys. Rev. Lett. 92, 226802 (2006)

    Article  ADS  Google Scholar 

  23. V. Perebeinos, J. Tersoff, P. Avouris, Phys. Rev. Lett. 94, 086802 (2005)

    Article  ADS  Google Scholar 

  24. G. Pennington, N. Goldsman, Phys. Rev. B 68, 086802 (2005)

    Google Scholar 

  25. M. Lazzeri, S. Piscanec, F. Mauri, A.C. Ferrari, J. Robertson, Phys. Rev. Lett. 95, 236802 (2005)

    Article  ADS  Google Scholar 

  26. M. Georghe, R. Gutierrez, N. Ranjan, A. Pecchia, A. Di Carlo, G. Cuniberti, Europhys. Lett. 71, 438 (2005)

    Article  ADS  Google Scholar 

  27. S. Roche, J. Jiang, F. Triozon, R. Saito, Phys. Rev. Lett. 95, 076803 (2005)

    Article  ADS  Google Scholar 

  28. M.A. Kuroda, A. Cangellaris, J.P. Leburton, Phys. Rev. Lett. 95, 266803 (2005)

    Article  ADS  Google Scholar 

  29. M. Lazzeri, F. Mauri, Phys. Rev. B 73, 165419 (2006)

    Article  ADS  Google Scholar 

  30. X. Zhou, J.Y. Park, S. Huang, J. Liu, P.L. McEuen, Phys. Rev. Lett. 95, 146805 (2005)

    Article  ADS  Google Scholar 

  31. S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson, Phys. Rev. Lett. 93, 185503 (2004)

    Article  ADS  Google Scholar 

  32. O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506 (2002)

    Article  ADS  Google Scholar 

  33. L.E.F. Foa Torres, S. Roche, Phys. Rev. Lett. 97, 076804 (2006)

    Article  ADS  Google Scholar 

  34. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  35. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22, 2099 (1980)

    Article  ADS  Google Scholar 

  36. G.D. Mahan, Phys. Rev. B 68, 125409 (2003)

    Article  ADS  Google Scholar 

  37. H. Watanabe, T. Kawarabayashi, Y. Ono, J. Phys. Soc. Japan 74, 1240 (2005)

    Article  MATH  ADS  Google Scholar 

  38. E.V. Anda, S.S. Makler, H.M. Pastawski, R.G. Barrera, Braz. J. Phys. 24, 330 (1994)

    Google Scholar 

  39. J. Bonča, S.A. Trugman, Phys. Rev. Lett. 75, 2566 (1995)

    Article  ADS  Google Scholar 

  40. L.E.F. Foa Torres, H.M. Pastawski, S.S. Makler, Phys. Rev. B 64, 193304 (2001)

    Article  ADS  Google Scholar 

  41. N. Mingo, K. Makoshi, Phys. Rev. Lett. 84, 3694 (2000)

    Article  ADS  Google Scholar 

  42. H. Ness, A.J. Fisher, Phys. Rev. Lett. 83, 452 (1999)

    Article  ADS  Google Scholar 

  43. E.G. Emberly, G. Kirczenow, Phys. Rev. B 61, 5740 (2000)

    Article  ADS  Google Scholar 

  44. L.E.F. Foa Torres, Phys. Rev. B 72, 245339 (2005)

    Article  ADS  Google Scholar 

  45. J.H. Shirley, Phys. Rev. 138, B979 (1965)

    Article  ADS  Google Scholar 

  46. H. Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  47. S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)

    Article  ADS  Google Scholar 

  48. D.F. Martínez, J. Phys. A 36, 9827 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. N. Mingo, L. Yang, J. Han, M.P. Anantram, Phys. Stat. Solidi B 226, 79 (2001)

    Article  ADS  Google Scholar 

  50. A. Svizhenko, M.P. Anantram, Phys. Rev. B 72, 085430 (2005)

    Article  ADS  Google Scholar 

  51. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)

    Article  ADS  Google Scholar 

  52. J. Jiang, R. Saito, G. Samsonidze, S. Chou, A. Jorio, G. Dresselhaus, M. Dresselhaus, Phys. Rev. B 72, 235408 (2005)

    Article  ADS  Google Scholar 

  53. From the point of view of momentum conservation, this process can be seen as an Umklapp process. Electrons and phonons not only interact among themselves (e–ph processes) but also with the periodic potential (lattice). Thus, momentum conservation is defined modulo a reciprocal lattice vector

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Roche.

Additional information

PACS

73.63.Fg; 72.10.Di; 73.23.-b; 05.60.Gg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foa Torres, L., Roche, S. Electron–phonon induced conductance gaps in carbon nanotubes. Appl. Phys. A 86, 283–288 (2007). https://doi.org/10.1007/s00339-006-3760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3760-4

Keywords

Navigation