Applied Physics A

, Volume 86, Issue 1, pp 55–61 | Cite as

Femtosecond laser-based fabrication of a new model material to study fracture

  • A. WeckEmail author
  • T.H.R. Crawford
  • A. Borowiec
  • D.S. Wilkinson
  • J.S. Preston


The ductile fracture process consists of the nucleation, growth and coalescence of voids in a material. Predictive models of ductility require a complete understanding of the coalescence event. However, coalescence occurs over very small strains and is therefore difficult to observe experimentally. We have addressed this by developing a new class of model material. It consists of femtosecond laser drilled holes and diffusion bonded metallic sheets, which can be mechanically tested in situ either by scanning electron microscopy (SEM) or by X-raycomputed tomography (XRCT). The fabrication steps are presented and the model material is characterized by optical and electron microscopy, nanoindentation and tomography. The heat affected zone around the laser holes is found to be harder than the unaffected material and consists of nano-scale grains. Finally we show that the coalescence event is well captured using both SEM and XRCT. The fabrication method is adaptable to a wide range of materials and enables one to produce 2D and 3D arrays of holes or cracks with controlled size, volume fraction and distribution.


Model Material Femtosecond Laser Ductile Fracture Heat Affected Zone Strain Rate Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Babout, E. Maire, J.-Y. Buffière, R. Fougères, Acta Mater. 49, 2055 (2001)CrossRefGoogle Scholar
  2. 2.
    A.A. Benzerga, J. Mech. Phys. Solids 50, 1331 (2002)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    A. Borowiec, D.M. Bruce, D.T. Cassidy, H.K. Haugen, Appl. Phys. Lett. 83, 225 (2003)CrossRefADSGoogle Scholar
  4. 4.
    A. Borowiec, M. Couillard, G.A. Botton, H.K. Haugen, Appl. Phys. A 79, 1887 (2004)ADSGoogle Scholar
  5. 5.
    A. Borowiec, H.K. Haugen, Appl. Phys. A 79, 521 (2004)CrossRefADSGoogle Scholar
  6. 6.
    D. Broek, Eng. Fract. Mech. 5, 55 (1973)CrossRefGoogle Scholar
  7. 7.
    J.-Y. Buffière, E. Maire, P. Cloetens, G. Lormand, R. Fougères, Acta Mater. 47, 1613 (1999)CrossRefGoogle Scholar
  8. 8.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)ADSGoogle Scholar
  9. 9.
    T.B. Cox, J.R. Low Jr., Metall. Trans. 5, 1457 (1974)Google Scholar
  10. 10.
    J. Gammage, D. Wilkinson, Y. Brechet, D. Embury, Acta Mater. 52, 5255 (2004)CrossRefGoogle Scholar
  11. 11.
    A.L. Gurson, J. Eng. Mater. Technol. 99 (1977)Google Scholar
  12. 12.
    S. Jia, G.L. Povirk, Int. J. Solids Struct. 39, 2533 (2002)zbMATHCrossRefGoogle Scholar
  13. 13.
    R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, R. Fortunier, Appl. Phys. Lett. 80, 3886 (2002)CrossRefADSGoogle Scholar
  14. 14.
    A. Luft, U. Franz, A. Emsermann, J. Kaspar, Appl. Phys. A 63, 93 (1996)ADSGoogle Scholar
  15. 15.
    P.E. Magnusen, E.M. Dubensky, D.A. Koss, Acta Metall. 36, 1503 (1988)CrossRefGoogle Scholar
  16. 16.
    F.A. McClintock, J. Appl. Mech. 35, 363 (1968)Google Scholar
  17. 17.
    S. Nagaki, Y. Nakayama, T. Abe, Int. J. Mech. Sci. 40, 215 (1998)CrossRefGoogle Scholar
  18. 18.
    S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, H. Welling, Appl. Phys. A 68, 563 (1999)CrossRefADSGoogle Scholar
  19. 19.
    T. Pardoen, J.W. Hutchinson, J. Mech. Phys. Solids 48, 2467 (2000)zbMATHCrossRefADSGoogle Scholar
  20. 20.
    J.R. Rice, D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969)CrossRefADSGoogle Scholar
  21. 21.
    J. Thøgersen, A. Borowiec, H.K. Haugen, F.E. McNeill, I.M. Stronach, Appl. Phys. A 73, 361 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    P.F. Thomason, Ductile Fracture of Metals (Pergamon Press, Oxford, 1990)Google Scholar
  23. 23.
    P.F. Thomason, J. Instrum. Met. 96, 360 (1968)Google Scholar
  24. 24.
    K. Uesugi, Y. Suzuki, N. Yagi, A. Tsuchiyama, T. Nakano, Nucl. Instrum. Methods Phys. Res. A 467468, 853 (2001)CrossRefGoogle Scholar
  25. 25.
    A. Weck, D. Wilkinson, H. Toda, E. Maire, Adv. Eng. Mater. 8, 469 (2006)CrossRefGoogle Scholar
  26. 26.
    A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003)CrossRefADSGoogle Scholar
  27. 27.
    X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, A. Misra, Appl. Phys. Lett. 88, 173116 (2006)CrossRefADSGoogle Scholar
  28. 28.
    X. Zhu, D.M. Villeneuve, A.Yu. Naumov, S. Nikumb, P.B. Corkum, Appl. Surf. Sci. 152, 138 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Weck
    • 1
    Email author
  • T.H.R. Crawford
    • 2
  • A. Borowiec
    • 2
  • D.S. Wilkinson
    • 1
  • J.S. Preston
    • 2
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada

Personalised recommendations