Skip to main content
Log in

Structure determination of very small (1–5 nm) nano-particles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The investigation of nanoparticles and quantum dots is of great interest, and the understanding of their optical, electronic and structural properties could be significantly improved if better structural information was available. In this paper a review is given on the latest improvements in a novel fit approach for powder X-ray diffraction data obtained from nanoparticles with diameters below 5 nm. The procedure is based on modelling on an atomic level and yields precise information on size, shape, structure (including impurities and stacking faults) stress, relaxation effects, etc. By implementing an ensemble averaging, we could consider distributions of the basic parameters (e.g., size distribution) and, therefore, a more realistic fit of the diffraction data is enabled. Different refinements of CdS, ZnS and ZnO particles are presented and demonstrate the superiority of the new approach compared to simpler models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  ADS  Google Scholar 

  2. W.C.W. Chan, S. Nie, Science 281, 2016 (1998)

    Article  ADS  Google Scholar 

  3. L.-S. Li, A.P. Alivisatos, Phys. Rev. Lett. 90, 097402 (2003)

    Article  ADS  Google Scholar 

  4. D. Katz, T. Wizansky, O. Millo, E. Rothenberg, T. Mokari, U. Banin, Phys. Rev. Lett. 89, 086801 (2002)

    Article  ADS  Google Scholar 

  5. Z.A. Peng, X. Peng, J. Am. Chem. Soc. 123, 183 (2001)

    Article  Google Scholar 

  6. R.N. Bhargava, J. Cryst. Growth 214, 926 (2000)

    Article  Google Scholar 

  7. V. Albe, C. Jouanin, D. Bertho, J. Cryst. Growth. 185, 388 (1998)

    Google Scholar 

  8. J.H. Fendler (Ed.), Nanoparticles and Nanostructured Films (Wiley-VCH, Weinheim 1998)

  9. Y. Mastai, G. Hodes, J. Phys. Chem. B 101, 2685 (1997)

    Article  Google Scholar 

  10. A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996)

    Article  Google Scholar 

  11. P.E. Lippens, M. Lannoo, Phys. Rev. B 39, 10935 (1989)

    Article  ADS  Google Scholar 

  12. C. Kumpf, R.B. Neder, F. Niederdraenk, P. Luczak, A. Stahl, M. Scheuermann, S. Joshi, S.K. Kulkarni, C. Barglik-Chory, C. Heske, E. Umbach, J. Chem. Phys. 123, 224707 (2005)

    Article  Google Scholar 

  13. A.S. Ethiraj, N. Hebalkar, S.K. Kulkarni, R. Pasricha, J. Urban, C. Dem, M. Schmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Heske, C. Kumpf, E. Umbach, J. Chem. Phys. 118, 8945 (2003)

    Article  ADS  Google Scholar 

  14. C. Barglik-Chory, D. Buchol, M. Schmitt, W. Kiefer, C. Heske, C. Kumpf, O. Fuchs, L. Weinhardt, A. Stahl, E. Umbach, M. Lentze, J. Geurts, G. Müller, Chem. Phys. Lett. 379, 443 (2003)

    Article  Google Scholar 

  15. J.N. Wickham, A.B. Herhold, A.P. Alivisatos, Phys. Rev. Lett. 84, 923 (2000)

    Article  ADS  Google Scholar 

  16. W. Vogel, J. Urban, M. Kundu, S.K. Kulkarni, Langmuir 13, 827 (1997)

    Article  Google Scholar 

  17. J. Nanda, S. Sapra, D.D. Sarma, N. Chandrasekharan, G. Hodes, Chem. Mater. 12, 1018 (2000)

    Article  Google Scholar 

  18. B. Palosz, E. Grzanka, S. Gierlotka, S. Stel’makh, U. Bismayer, J. Neuefeind, H.-P. Weber, T. Proffen, R. von Dreele, W. Paloz, Z. Kristallogr. 217, 497 (2002)

    Article  Google Scholar 

  19. B.E. Warren, X-Ray Diffraction (Dover Publications, New York, 1990)

    Google Scholar 

  20. U. Winkler, D. Eich, Z.H. Chen, R. Fink, S.K. Kulkarni, E. Umbach, Chem. Phys. Lett. 306, 95 (1999)

    Article  Google Scholar 

  21. M. Kundu, A. Khosravi, P. Singh, S.K. Kulkarni, J. Mater. Sci. 32, 245 (1997)

    Article  Google Scholar 

  22. R. Feidenhans’l, Surf. Sci. Rep. 10, 105 (1989)

    Article  Google Scholar 

  23. E. Vlieg, J. Appl. Cryst. 30, 532 (1997)

    Article  Google Scholar 

  24. T. Proffen, R.B. Neder, J. Appl. Cryst. 32, 838 (1999)

    Article  Google Scholar 

  25. B.D. Hall, R. Monot, Comput. Phys. 5, 414 (1991)

    Article  ADS  Google Scholar 

  26. V.I. Korsounski, R.B. Neder, K. Hradil, C. Barglik-Chory, G. Müller, J. Neuefeind, J. Appl. Cryst. 36, 1389 (2003)

    Article  Google Scholar 

  27. R. Storn, K. Price, “Differential Evolution – a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces”, Technical Report TR-95-012, ICSI, Univ. of California, Berkeley, March 1995. Available at: http://www.icsi.berkeley.edu/techreports/1995.abstracts/tr-95-012.html

  28. C. Kumpf, R.B. Neder, F. Niederdraenk, K. Seufert, P. Luczak, E. Umbach, unpublished

  29. R.B. Neder, private communications

  30. SIMultaneous Rietveld REFinement by U. Amann, H. Ritter, J. Ihringer, J.K. Maichle, W. Prandl, Universität Tübingen. Code available at www.uni-tuebingen.de/uni/pki/simref/simref.html

  31. “Crystallographic and Crystallochemical Database for Mineral and their Structural Analogues”, available at http://database.iem.ac.ru/mincryst

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kumpf.

Additional information

PACS

61.10.Nz; 61.46.Df; 61.72.Dd

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumpf, C. Structure determination of very small (1–5 nm) nano-particles. Appl. Phys. A 85, 337–343 (2006). https://doi.org/10.1007/s00339-006-3693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3693-y

Keywords

Navigation