Applied Physics A

, Volume 85, Issue 2, pp 141–143 | Cite as

Self-organized minimum-energy structures for dielectric elastomer actuators



When a stretched elastomer is laminated to a flat plastic frame, a complex shape is formed, which is termed a minimum-energy structure. It is shown how self-organized structures can be applied in the development of actuators with complex, out-of-plane actuationmodes. This unusual concept is then demonstrated in the case of dielectric elastomer actuators. Among advantages of this approach are the simplicity in manufacturing, the potential complexity and sophistication of the manufactured structures, and the general benefits of the concept when applied to other electro-mechanically active materials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Bar-Cohen (ed.), Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (International Society for Optical Engineering (SPIE), Bellingham, Washington, 2004)Google Scholar
  2. 2.
    Q. Pei, R. Pelrine, S. Stanford, R.D. Kornbluh, M.S. Rosenthal, Synth. Met. 135136, 129 (2003)CrossRefGoogle Scholar
  3. 3.
    H. Prahlad, R. Kornbluh, R. Pelrine, S. Stanford, J. Eckerle, S. Oh, Polymer power: dielectric elastomers and their applications in distributed actuation and power generation. In Proc. ISSS 2005, Bangalore, India, 2005, SA-13Google Scholar
  4. 4.
    L. Treloar, The Physics of Rubber Elasticity (Oxford Classic Texts Phys. Sci.) (Oxford University Press, Oxford, 2005)Google Scholar
  5. 5.
    R. Osserman (ed.), Geometry V, vol. 90 of Encyclopaedia of Mathematical Sciences (Springer, Berlin, 1997)Google Scholar
  6. 6.
    S. Hildebrandt, A. Tromba, The Parsimonious Universe: Shape and Form in the Natural World (Copernicus/Springer, New York, 1996)Google Scholar
  7. 7.
    J.M. Skotheim, L. Mahadevan, Science 308, 1308 (2005)CrossRefADSGoogle Scholar
  8. 8.
    R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, Science 287, 836 (2000)CrossRefADSGoogle Scholar
  9. 9.
    E.W.H. Jager, O. Inganas, I. Lundstrom, Science 288, 2335 (2000)CrossRefADSGoogle Scholar
  10. 10.
    A.R. Tajbakhsh, E.M. Terentjev, Eur. Phys. J. E 6, 181 (2001)CrossRefGoogle Scholar
  11. 11.
    Q.M. Zhang, H. Li, M. Poh, F. Xia, Z. Cheng, H. Xu, C. Huang, Nature 419, 284 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Applied Condensed Matter PhysicsUniversity of PotsdamPotsdamGermany
  2. 2.VTT Technical Research Centre of FinlandTampereFinland
  3. 3.Department of Soft Matter PhysicsJohannes Kepler UniversityLinzAustria

Personalised recommendations