Applied Physics A

, Volume 84, Issue 4, pp 385–389 | Cite as

A novel drum piezoelectric-actuator

  • C.L. SunEmail author
  • K.H. Lam
  • H.L.W. Chan
  • X.-Z. Zhao
  • C.L. Choy
Rapid communication


This paper presents a large displacement, piezoelectric-metal structure actuator, named the piezoelectric drum actuator. The drum actuator consists of a short, thick-walled steel cylinder sandwiched by two thin composite disks, which are fabricated from a brass disk bonded with a piezoceramic disk. The piezoceramic disk, which is polarized in its thickness direction, has a large diameter thickness ratio, producing a large radial displacement under an applied voltage in the thickness, leading to a large transverse deflection of the composite disks in the drum. The drum (outer diameter: 12.0 mm) has a displacement that is about eight times larger than that of a cymbal actuator made with the same ceramic material and comparable dimensions under the same dc driving voltage of 270 V. The drum actuator also showed a large resonance displacement of 56.7 μm under an ac voltage of 90 V. The effective piezoelectric charge coefficient d’33 of the drum is about twice as large as that reported for the cymbal.


Piezoelectric Actuator Driving Voltage Piezoelectric Charge Composite Disk Brass Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Norwell, Massachusetts, 1997)Google Scholar
  2. 2.
    R.E. Newnham, A. Dogan, Q.C. Xu, K. Onitsuka, J. Tressler, S. Yoshikawa, Ultrasonics symposium Part 1, Vol. 1, 509 (1993)Google Scholar
  3. 3.
    J. Zhang, A.C. Hladky-Hennion, W.J. Hughes, R.E. Newnham, Ultrasonics 39, 91 (2001)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, W.J. Hughes, P. Bouchilloux, R.J. Meyer Jr., K. Uchino, R.E. Newnham, Ultrasonics 37, 387 (1999)CrossRefGoogle Scholar
  5. 5.
    R.J. Meyer Jr., A. Dogan, C. Yoon, S.M. Pilgrim, R.E. Newnham, Sens. Actuators A 87, 157 (2001)CrossRefGoogle Scholar
  6. 6.
    C.L. Sun, S.S. Guo, X.-Z. Zhao, Sens. Actuators A 121, 213 (2005)CrossRefGoogle Scholar
  7. 7.
    S. Dong, X. Du, P. Bouchilloux, K. Uchino, J. Electroceram. 8, 155 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Dong, X.H. Du, P. Bouchilloux, K. Uchino, J. Intell. Mater. Syst. Struct. 12, 613 (2001)CrossRefGoogle Scholar
  9. 9.
    K. Abe, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, L408 (1982)CrossRefADSGoogle Scholar
  10. 10.
    A. Dogan, K. Uchino, R.E. Newnham, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 597 (1997)CrossRefGoogle Scholar
  11. 11.
    K. Uchino, Piezoelectric/Electrostrictive Actuators (Morikita, Tokyo, 1986)Google Scholar
  12. 12.
    A. Dogan, S. Yoshikawa K. Uchino, R.E. Newnham, IEEE Int. Symp. Proc., Vol. II, 935 (1994)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C.L. Sun
    • 1
    • 2
    Email author
  • K.H. Lam
    • 1
  • H.L.W. Chan
    • 1
  • X.-Z. Zhao
    • 2
  • C.L. Choy
    • 1
  1. 1.Department of Applied Physics and Materials Research CenterThe Hong Kong Polytechnic UniversityHong KongP.R. China
  2. 2.Department of PhysicsWuhan UniversityWuhanP.R. China

Personalised recommendations