Skip to main content
Log in

Electrical properties and diffusion behavior of hafnium in single crystal silicon

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrical properties and diffusivity of Hf in single crystal Si have been studied. Several deep level defects were found for Hf in both the upper and lower half of the silicon band gap, and their parameters were measured. Energy levels, concentrations, and capture cross sections were determined for all Hf defects. The DLTS spectra depend on the cooling rate. Analysis of electrical properties yielded a dominant deep level defect at EC -0.27 eV, which showed field enhanced emission due to Poole–Frenkel effect, confirming its donor nature. This agreed with results obtained using CV and TSCAP. In the lower half of the bandgap, a defect level at EV +0.24 eV was found to have a capture barrier of 0.04 eV. Diffusivity of Hf was studied using two methods for Hf incorporation in Si – ion implantation and sputtering. Analysis of broadening of the Hf profile in implanted samples, which were annealed for 168 h, allowed us to estimate the diffusivity of Hf as 1.7×10-15 cm2/s at 1250 °C: the spreading of implanted profiles at lower temperatures was too small. Analysis of Hf depth profiles in the sputtered and annealed samples reveals that Hf appears to have a fast and slow component to its diffusivity whose migration energy was determined to be 3.5±0.3 eV and 4.1±0.3 eV respectively. The fast and slow component are ascribed to interstitial and substitutional Hf with an energy level of EC -0.27 eV and EV +0.43 eV respectively. The mechanism for the fast component seems to indicate a direct interstitial diffusion mechanism whereas the diffusion of the substitutional Hf seems most consistent with the concerted exchange diffusion mechanism. In addition, estimates of solubility for both, interstitial and substitutional Hf, are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  2. R.M. Wallace, G.D. Wilk, Semicond. Int. 24, 153 (2001)

    Google Scholar 

  3. R.M. Wallace, G.D. Wilk, Semicond. Int. 24, 227 (2001)

    Google Scholar 

  4. K. Young-Hee, J.C. Lee, Microelectron. Reliab. 44, 183 (2004)

    Article  Google Scholar 

  5. Z. Wenjuan, H. Jin-Ping, T.P. Ma, IEEE Trans. Electron. Dev. 51, 98 (2004)

    Article  Google Scholar 

  6. S. Ramanathan, P.C. McIntyre, S. Guha, E. Gusev, Appl Phys Lett 84, 389 (2004)

    Article  ADS  Google Scholar 

  7. W. Hei, in ICCDCS 2004, Fifth International Caracas Conference on Devices, Circuits and Systems (IEEE Cat. No. 04TH8783), IEEE, Piscataway, NJ, USA (2004), pp. 56–60

  8. M. Kappa, M. Ratzke, J. Reif, Solid State Phenom. 108109, 723 (2005)

    Article  Google Scholar 

  9. J.T. Ryan, P.M. Lenahan, A.Y. Kang, J.F. Conley Jr., G. Bersuker, P. Lysaght, IEEE Trans. Nucl. Sci. 52, 2272 (2005)

    Article  ADS  Google Scholar 

  10. K. Yamamoto, S. Kubicek, A. Rothschild, R. Mitsuhashi, W. Deweerd, A. Veloso, M. Jurczak, S. Biesemans, S. De Gendt, S. Wickramanayaka, S. Hayashi, M. Niwa, Microelectron. Eng. 80, 198 (2005)

    Article  Google Scholar 

  11. M.T. Ho, Y. Wang, R.T. Brewer, L.S. Wielunski, Y.J. Chabal, N. Moumen, M. Boleslawski, Appl. Phys. Lett. 87, 133103 (2005)

    Article  ADS  Google Scholar 

  12. H. Lemke, Phys. Stat. Solidi A 122, 617 (1990)

    Article  Google Scholar 

  13. M. Quevedo-Lopez, M. El-Bouanani, S. Addepalli, J.L. Duggan, B.E. Gnade, R.M. Wallace, M.R. Visokay, M. Douglas, L. Colombo, Appl. Phys. Lett. 79, 4192 (2001)

    Article  ADS  Google Scholar 

  14. W.K. Chu, J.R. Liu, Mater. Chem. Phys. 46, 183 (1996)

    Article  Google Scholar 

  15. W.K. Chu, J.W. Mayer, M.A. Nicolet, T.M. Buck, G. Amsel, F. Eisen, Thin Solid Films 17, 1 (1973)

    Article  ADS  Google Scholar 

  16. D.K. Schroder, Semiconductor Material and Device Characterization, 2nd Ed. (Wiley, New York, 1998)

  17. J. Weber, S. Knack, O.V. Feklisova, N.A. Yarykin, E.B. Yakimov, Microelectron. Eng. 66, 320 (2003)

    Article  Google Scholar 

  18. J. Weber, S. Knack, J.U. Sachse, Physica B 273274, 492 (1999)

    Google Scholar 

  19. D.V. Lang, H.G. Grimmeiss, E. Meijer, M. Jaros, Phys. Rev. B 22, 3917 (1980)

    Article  ADS  Google Scholar 

  20. O. Engstrom, A. Alm, Solid State Electron. 21, 1571 (1978)

    Article  ADS  Google Scholar 

  21. R. Sachdeva, A.A. Istratov, P.N.K. Deenapanray, E.R. Weber, Phys. Rev. B 71, 195208 (2005)

    Article  ADS  Google Scholar 

  22. P.A. Martin, B.G. Streetman, K. Hess, J. Appl. Phys. 52, 7409 (1981)

    Article  ADS  Google Scholar 

  23. P. Blood, J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, London, 1992)

  24. H. Hieslmair, S. Balasubramanian, A.A. Istratov, E.R. Weber, Semicond. Sci. Technol. 15, 567 (2001)

    Article  ADS  Google Scholar 

  25. P. Zhang, F. Stevie, R. Vanfleet, R. Neelakantan, M. Klimov, D. Zhou, L. Chow, J. Appl. Phys. 96, 1053 (2004)

    Article  ADS  Google Scholar 

  26. F.Y.G. Ren, J. Michel, Q. Sun-Paduano, B. Zheng, H. Kitagawa, D.C. Jacobson, J.M. Poate, L.C. Kimerling, in Silicon-Based Optoelectronic Materials, ed. by M.A. Tischler, R.T. Collins, M.L.W. Thewalt, G. Abstreiter (Mater. Res. Soc., Philadelphia, PA, 1993), p. 415

  27. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1998)

    Google Scholar 

  28. M.B. Shabani, T. Yoshimi, H. Abe, T. Nakai, B. Cordts, in Proceedings of the Seventh International Symposium on Silicon-On-Insulator Technology and Devices, ed. by P.L.F. Hemment, S. Cristoloveanu, K. Izumi, T. Houston, S. Wilson (Electochem. Soc., Pennington, NJ, USA, 1996), pp. 162–175

  29. J. Crank, The Mathematics of Diffusion, 2d Ed. (Clarendon Press, Oxford, 1999)

  30. TSUPREM4, User’s Manual (Palo Alto, CA, 1996)

  31. S.P. Murarka, C.C. Chang, Appl. Phys. Lett. 37, 639 (1980)

    Article  ADS  Google Scholar 

  32. R. Dorward, J. Kirkaldy, Trans. AIME 242, 2055 (1968)

    Google Scholar 

  33. E.R. Weber, Appl. Phys. A 30, 1 (1983)

    Article  ADS  Google Scholar 

  34. X.T. Ren, M.B. Huang, in Ion Beam Synthesis and Processing of Advanced Materials. Symposium. (Materials Research Society Symposium Proceedings Vol. 647) (Mater. Res. Soc., Warrendale, PA, USA, 2001), pp. O11.28.1–6

  35. F.Y.G. Ren, J. Michel, Q. Sun-Paduano, B. Zheng, H. Kitagawa, D.C. Jacobson, J.M. Poate, L.C. Kimerling, in Rare Earth Doped Semiconductors, ed. by G.S. Pomrenke, P.B. Klein, D.W. Langer (Mater. Res. Soc., Pittsburg, 1993), p. 87

  36. P.M. Fahey, P.B. Griffin, J.D. Plummer, Rev. Mod. Phys. 61, 289 (1989)

    Article  ADS  Google Scholar 

  37. R.J. Borg, G.J. Dienes, An Introduction to Solid State Diffusion (Academic Press, Boston, 1988)

    Google Scholar 

  38. J. Utzig, J. Appl. Phys. 65, 3868 (1989)

    Article  ADS  Google Scholar 

  39. G.K. Azimov, S. Zainabidinov, D.E. Nazyrov, Fiz. Tekh. Poluprovodnikov 23, 556 (1989)

    Google Scholar 

  40. H. Bracht, MRS Bull. 25, 22 (2000)

    Google Scholar 

  41. H. Bracht, private communications at ICDS 2005 (2005)

  42. V.A. Uskov, A.I. Rodionov, G.T. Vlasenko, A.B. Fedotov, in Doped Semiconductors (Nauka, Moscow, 1985), p. 80

  43. K.C. Pandey, Phys. Rev. Lett. 57, 2287 (1986)

    Article  ADS  Google Scholar 

  44. G.J. Dienes, D.O. Welch, Phys. Rev. Lett. 59, 843 (1987)

    Article  ADS  Google Scholar 

  45. A. Janotti, A. Fazzio, R. Mota, P. Piquini, Solid State Commun. 110, 457 (1999)

    Article  ADS  Google Scholar 

  46. P. Boguslawski, J. Bernholc, Phys. Rev. Lett. 88, 166101/1 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sachdeva.

Additional information

PACS

61.72.Tt; 66.30.Jt; 71.55.Cn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachdeva, R., Istratov, A., Deenapanray, P. et al. Electrical properties and diffusion behavior of hafnium in single crystal silicon. Appl. Phys. A 84, 351–367 (2006). https://doi.org/10.1007/s00339-006-3637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3637-6

Keywords

Navigation