Applied Physics A

, Volume 84, Issue 3, pp 317–321 | Cite as

Etching temperature dependence of optical properties of the electrochemically etched n-GaAs

Article

Abstract

The GaAs granular films have been prepared by electrochemical anodic etching of n-GaAs in HCl electrolyte at different etching temperatures. The microstructure and optical properties of the films were investigated by micro-Raman spectrum, atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. Raman spectra reveal marked redshift and broadening, which could be explained by phonon confinement model. Results show the GaAs nanocrystalline films have formed during the anodic etching process under certain chemical conditions. Two “infrared” PL bands at ∼860 nm and ∼920 nm and a strongly enhanced visible PL band envelope around 550 nm were observed in the film prepared at etching temperature of 50 °C. The “green” PL band envelope is attributed to both quantum confinement in GaAs nanocrystals and PL of Ga2O3 and As2O3. The results reveal that the energy band structure of GaAs granular films is closely related to the etching temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.G. Cullis, L.T. Canham, P.D.G. Calcott, J. Appl. Phys. 82, 909 (1997)CrossRefADSGoogle Scholar
  2. 2.
    P.M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 4, 1020 (1998)CrossRefGoogle Scholar
  3. 3.
    J.S. Shor, I. Grimberg, B.Z. Weiss, A.D. Kurtz, Appl. Phys. Lett. 62, 2836 (1993)CrossRefADSGoogle Scholar
  4. 4.
    T. Takizawa, S. Arai, M. Nakahara, Jpn. J. Appl. Phys. 1 33, 2643 (1994)Google Scholar
  5. 5.
    N.G. Ferreira, D. Soltz, F. Decker, L. Cescato, J. Electrochem. Soc. 142, 1348 (1995)CrossRefGoogle Scholar
  6. 6.
    E. Kumino, M. Amiotto, T. Takizawa, S. Arai, Jpn. J. Appl. Phys. 1 34, 177 (1995)CrossRefGoogle Scholar
  7. 7.
    A.I. Belogrokhov, V.A. Karavanskii, A.N. Obraztsov, V.Y. Timoshenko, JETP Lett. 60, 275 (1994)ADSGoogle Scholar
  8. 8.
    B.H. Erne, D. Vanmeakelbergh, J.J. Kelly, Adv. Mater. 7, 739 (1995)CrossRefGoogle Scholar
  9. 9.
    A. Aredda, A. Serpi, V.A. Karravanskii, I.M. Tiginyanu, V.M. Ichizli, Appl. Phys. Lett. 67, 3316 (1995)CrossRefADSGoogle Scholar
  10. 10.
    I.M. Tiginyanu, V.V. Ursaki, V.A. Karavanskii, V.N. Sokolov, Y.S. Raptis, E. Anastassakis, Solid State Commun. 97, 675 (1996)CrossRefADSGoogle Scholar
  11. 11.
    B.H. Erne, D. Vanmaekelbergh, J.J. Kelly, J. Electrochem. Soc. 143, 305 (1996)CrossRefGoogle Scholar
  12. 12.
    A. Meyerink, A.A. Bol, J.J. Kelly, Appl. Phys. Lett. 69, 2801 (1996)CrossRefADSGoogle Scholar
  13. 13.
    J. Sabataityte, I. Simkiene, R.A. Bendorius, K. Grigoras, V. Jasutis, V. Pacebutas, H. Tvardauskas, K. Naudzius, Mater. Sci. Eng. C 19, 155 (2002)CrossRefGoogle Scholar
  14. 14.
    L. Beji, L. Sfaxi, B. Ismail, S. Zghal, F. Hassen, H. Maaref, Microelectron. J. 34, 969 (2003)CrossRefGoogle Scholar
  15. 15.
    P. Schmuki, D.J. Lockwood, H.J. Labbe, J.W. Fraser, Appl. Phys. Lett. 69, 1620 (1996)CrossRefADSGoogle Scholar
  16. 16.
    D.J. Lockwood, P. Schmuki, H.J. Labbe, J.W. Fraser, Physica E 4, 102 (1999)CrossRefADSGoogle Scholar
  17. 17.
    J. Nayak, R. Mythili, M. Vijayalakshmi, S.N. Sahu, Physica E 24, 227 (2004)CrossRefADSGoogle Scholar
  18. 18.
    S.Y. Alqaradawi, A.S. Aljaber, M.M. Khader, Thin Solid Films 444, 282 (2003)CrossRefADSGoogle Scholar
  19. 19.
    M. Hao, H. Uchida, C. Shao, T. Soga, T. Jimbo, M. Umeno, J. Cryst. Growth 179, 661 (1997)CrossRefADSGoogle Scholar
  20. 20.
    K.K. Tiong, P.M. Amirtharaj, F.H. Pollak, D.E. Aspens, Appl. Phys. Lett. 44, 122 (1984)CrossRefADSGoogle Scholar
  21. 21.
    D.V. Murphy, S.R.J. Brueck, Opt. Lett. 8, 494 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    B.B. Li, D.P. Yu, S.L. Zhang, Phys. Rev. B. 59, 1645 (1999)CrossRefADSGoogle Scholar
  23. 23.
    P. Parayanthal, F.H. Pollak, Phys. Rev. Lett. 52, 1822 (1984)CrossRefADSGoogle Scholar
  24. 24.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1967)Google Scholar
  25. 25.
    H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)CrossRefADSGoogle Scholar
  26. 26.
    W.P. Dumke, Phys. Rev. 132, 1998 (1963)CrossRefADSGoogle Scholar
  27. 27.
    L.E. Brus, J. Chem. Phys. 80, 4403 (1984)CrossRefADSGoogle Scholar
  28. 28.
    J.I. Zlnk, B.P. Chandra, J. Phys. Chem. 86, 5 (1982)CrossRefGoogle Scholar
  29. 29.
    P. Guha, S. Chakrabarti, S. Chaudhuri, Physica E 23, 81 (2004)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of PhysicsShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.School of Chemistry and Chemical TechnologyShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations