Skip to main content
Log in

Formation of an extended nanostructured metal surface by ultra-short laser pulses: single-pulse ablation in the high-fluence limit

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The threshold character of ultra-short-pulse laser ablation allows the formation of sub-diffraction-limited structures. In order to achieve nanostructuring of an extended area in reasonable production times, parallel production is highly desirable. In this paper we analyze the results obtained by nanostructuring using a self-assembled microlens array formed by deposition of quartz spheres directly on a noble-metal surface or on a quartz spacer layer. The quartz spheres are removed by a single laser pulse, so the structures formed are the result of single-shot ablation. The size of the holes formed depends on the laser fluence and the thickness of the transparent spacer layer. The hole depths are significantly larger than the optical penetration depth, indicating that heat diffusion plays an important role. The results are analyzed by solving the two-temperature diffusion model numerically in one dimension. The results from the numerical simulation lead to the formulation of a simple analytical model for the ablation at high fluence, which reproduces the results of the simulation quite well and is in qualitative agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Balling, in Laser Cleaning II, ed. by D.M. Kane (World Scientific, Singapore, 2005)

  2. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995)

    Article  Google Scholar 

  3. P. Simon, J. Ihlemann, Appl. Surf. Sci. 109110, 25 (1997)

    Article  Google Scholar 

  4. B. Békési, J.H. Klein-Wiele, P. Simon, Appl. Phys. A 76, 355 (2003)

    Article  Google Scholar 

  5. K. Piglmayer, R. Denk, D. Bäuerle, Appl. Phys. Lett. 80, 4693 (2002)

    Article  Google Scholar 

  6. U.C. Fischer, H.P. Zingsheim, J. Vac. Sci. Technol. 19, 881 (1981)

    Article  Google Scholar 

  7. H.-J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, J. Boneberg, J. Microsc. 202, 129 (2001)

    Article  PubMed  Google Scholar 

  8. K. Vestentoft, J.A. Olesen, B.H. Christensen, P. Balling, Appl. Phys. A 80, 493 (2005)

    Article  Google Scholar 

  9. P.W. Barber, S.C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990)

    Google Scholar 

  10. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974)

    Google Scholar 

  11. S.I. Anisimov, B. Rethfeld, Proc. SPIE 3093, 192 (1997)

    Article  Google Scholar 

  12. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin Heidelberg, 2000)

  13. D.E. Gray, American Institute of Physics Handbook, 3rd edn. (McGraw-Hill, New York, 1972)

  14. M. Bass (ed. in chief), Handbook of Optics, 2nd edn. (McGraw-Hill, New York, 1995)

  15. R.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)

    Article  Google Scholar 

  16. J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    Article  Google Scholar 

  17. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A 69, S359 (1999)

    Article  Google Scholar 

  18. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Phys. Rev. B 65, 092103 (2002)

    Article  Google Scholar 

  19. X.Y. Wang, D.M. Riffe, Y.-S. Lee, M.C. Downer, Phys. Rev. B 50, 8016 (1994)

    Article  Google Scholar 

  20. V. Schmidt, W. Husinsky, G. Betz, Appl. Surf. Sci. 197198, 145 (2002)

    Article  Google Scholar 

  21. Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, J. Phys.: Condens. Matter 6, 6733 (1994)

    Article  Google Scholar 

  22. P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)

    PubMed  Google Scholar 

  23. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995)

    Google Scholar 

  24. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Google Scholar 

  25. S.S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, Appl. Phys. A 69, 99 (1999)

    Article  Google Scholar 

  26. R. Lausten, J.A. Olesen, K. Vestentoft, P. Balling, in Ultrafast Phenomena XIII (Springer Ser. Chem. Phys. 71) (Springer, Berlin Heidelberg, 2002), pp. 675–677

  27. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    Google Scholar 

  28. A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373 (2003)

    Article  Google Scholar 

  29. J.B. Smith, H. Ehrenreich, Phys. Rev. B 25, 923 (1982)

    Article  Google Scholar 

  30. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  31. A.H. MacDonald, Phys. Rev. Lett. 44, 189 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Balling.

Additional information

PACS

61.80.Ba; 78.47.+p; 81.16.Rf; 81.65.Cf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vestentoft, K., Balling, P. Formation of an extended nanostructured metal surface by ultra-short laser pulses: single-pulse ablation in the high-fluence limit. Appl. Phys. A 84, 207–213 (2006). https://doi.org/10.1007/s00339-006-3602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3602-4

Keywords

Navigation