Skip to main content
Log in

XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th–13th century)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

It has recently been shown that lustre decoration of medieval and Renaissance pottery consists of silver and copper nanoparticles dispersed in the glassy matrix of the ceramic glaze. Here the findings of an X-ray absorption fine structure (XAFS) study on lustred glazes of shards belonging to 10th and 13rd century pottery from the National Museum of Iran are reported. Absorption spectra in the visible range have been also measured in order to investigate the relations between colour and glaze composition. Gold colour is mainly due to Ag nanoparticles, though Ag+, Cu+ and Cu2+ ions can be also dispersed within the glassy matrix, with different ratios. Red colour is mainly due to Cu nanoparticles, although some Ag nanoparticles, Ag+ and Cu+ ions can be present. The achievement of metallic Cu and the absence of Cu2+ indicate a higher reduction of copper in red lustre. These findings are in substantial agreement with previous results on Italian Renaissance pottery. In spite of the large heterogeneity of cases, the presence of copper and silver ions in the glaze confirms that lustre formation is mediated by a copper- and silver-alkali ion exchange, followed by nucleation and growth of metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Caiger-Smith, Luster Pottery. Technique, Tradition and Innovation in Islam and the Western World (Faber & Faber, London, 1985)

    Google Scholar 

  2. J. Pérez-Arantegui, J. Molera, A. Larrea, T. Pradell, M. Vendrell-Saz, I. Borgia, B.G. Brunetti, F. Cariati, P. Fermo, M. Mellini, A. Sgamellotti, C. Viti, J. Am. Ceram. Soc. 84, 442 (2001)

    Article  Google Scholar 

  3. I. Borgia, B. Brunetti, I. Mariani. A. Sgamellotti, F. Cariati, P. Fermo, M. Mellini, C. Viti, G. Padeletti, Appl. Surf. Sci. 185, 206 (2002)

    Article  ADS  Google Scholar 

  4. P. Fermo, F. Cariati, C. Cipriani, M. Canetti, G. Padeletti, B. Brunetti, A. Sgamellotti, Appl. Surf. Sci. 185, 309 (2002)

    Article  ADS  Google Scholar 

  5. G. Padeletti, P. Fermo, Appl. Phys A 76, 515 (2003)

    Article  ADS  Google Scholar 

  6. G. Padeletti, P. Fermo, Appl. Phys A 77, 125 (2003)

    Article  ADS  Google Scholar 

  7. A. Romani, C. Miliani, A. Morresi, N. Forini, G. Favaro, Appl. Surf. Sci. 157, 112 (2000)

    Article  ADS  Google Scholar 

  8. S. Padovani, C. Sada, P. Mazzoldi, B. Brunetti, I. Borgia, A. Giulivi, A. Sgamellotti, F. D’Acapito, G. Battaglin, J. Appl. Phys. 93, 158 (2003)

    Article  Google Scholar 

  9. I. Borgia, B. Brunetti, A. Giulivi, A. Sgamellotti, F. Shokoui, P. Oliaiy, J. Rahighi, M. Lamehi-Rachti, M. Mellini, C. Viti, Appl. Phys. A 79, 257 (2004)

    Article  ADS  Google Scholar 

  10. S. Padovani, I. Borgia, B. Brunetti, A. Sgamellotti, A. Giulivi, F. D’Acapito, P. Mazzoldi, G. Battaglin, Appl. Phys. A 79, 229 (2004)

    Article  ADS  Google Scholar 

  11. F. Gonella, P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology, Vol. 4, ed. by H.S. Nalwa (Academic, San Diego, 2000)

  12. U. Kreibig, M. Vollmer, Optical properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  13. F. Shokoui, P. Oliaiy, J. Rahighi, M. Lamehi-Rachti, Z. Roohfar, S. Durali, Int. J. PIXE (2003)

  14. A. Qasim, Treatise on Ceramics, ed. by J.W. Allan (, Iran, 1973)

  15. C. Piccolpasso, Li Tre Libri dell’Arte del Vasaio (1557 Edizioni all’Insegna del Giglio, Firenze, 1976)

    Google Scholar 

  16. P.A. Lee, P.H. Citrin, P. Eisenberger, B.M. Kincaid, Rev. Mod. Phys. 53, 769 (1981)

    Article  ADS  Google Scholar 

  17. S. Pascarelli, F. Boscherini, F. D’Acapito, J. Hrdy, C. Meneghini, S. Mobilio, J. Synchrotron. Radiat. 3, 147 (1996)

    Article  Google Scholar 

  18. A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Phys. Rev. B 58, 7565 (1998)

    Article  ADS  Google Scholar 

  19. H.G. Fritche, R.E. Benfield, Z. Phys. D 26, 15 (1993)

    Article  ADS  Google Scholar 

  20. S. Padovani, Copper and Silver Doping of Silicate Glasses by the Ion Exchange Process: Fundamental and Experimental Aspects, PhD Thesis (2003)

  21. F. D’Acapito, S. Mobilio, G. Battaglin, E. Cattaruzza, F. Gonella, F. Caccavale, P. Mazzoldi, J. Regnard, J. Appl. Phys. 87, 1819 (2000)

    Article  ADS  Google Scholar 

  22. F. D’Acapito, S. Mobilio, J. Regnard, E. Cattaruzza, F. Gonella, P. Mazzoldi, J. Non-Cryst. Solids 232234, 364 (1998)

    Article  Google Scholar 

  23. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  Google Scholar 

  24. R.H. Magruder III, D.H. Osborne Jr., R.A. Zuhr, J. Non-Cryst. Solids 176, 299 (1994)

    Article  ADS  Google Scholar 

  25. G. De, M. Catalano, G. Battaglin, F. Caccavale, F. Gonella, P. Mazzoldi, R.F. Haglund, Appl. Phys. Lett. 68, 3820 (1996)

    Article  ADS  Google Scholar 

  26. J.A. Creighton, D.G. Eadon, J. Chem. Soc. Faraday Trans. 87, 3881 (1991)

    Article  Google Scholar 

  27. F. Gonella, F. Caccavale, L.D. Bogomolova, F. D’Acapito, A. Quaranta, J. Appl. Phys. 83, 1200 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.G. Brunetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padovani, S., Puzzovio, D., Sada, C. et al. XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th–13th century). Appl. Phys. A 83, 521–528 (2006). https://doi.org/10.1007/s00339-006-3558-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3558-4

Keywords

Navigation