Skip to main content

Advertisement

Log in

Modelling the size of red-colouring copper nanoclusters in archaeological glass beads

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The origin of a red colour in ancient soda-lime glasses has been attributed either to the presence of both copper clusters and cuprous oxide or to copper alone. As a contribution to this question, a non-destructive X-ray absorption study at the [ Cu]K-edge was undertaken on the red layer from a singular “rosette”-type archaeological glass bead dated as pre-XVII century. On comparing with data collected from metallic copper and the mineral cuprite, cubic Cu2O, XANES spectra of the red glass are identical to the first. Theoretical modelling of Cu 1s XANES spectra was undertaken using the FEFF code based on a multiple scattering formalism. A hypothetical tetragonal structure was simulated for Cu2O in order to remove the constraints arising from linear O–Cu–O bonds, unstable within the silica glass matrix, and an ideal body-centred array was considered on the basis of real metallic Cu–Cu distances in the metal. Calculations were performed for atom clusters of variable size within real and hypothetical structures. A spherical cluster of about 5 Å radius, capped by 24 copper atoms already provides a calculated Cu 1s XANES spectrum that compares well with data collected from the red glass. Post-edge details are noted in relation to the oxide, considering ionic states and effective valences of copper. The possibility of estimating the size of copper clusters through simulated structures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Doremus, Glass Science (Wiley, New York, 1973)

    Google Scholar 

  2. W.A. Weyl, Coloured Glasses (Soc. Glass Tech., Sheffield, 1951)

    Google Scholar 

  3. R.H. Brill, N.D. Cahill, J. Glass Stud. 30, 16 (1988)

    Google Scholar 

  4. N. Brun, L. Mazerolles, M. Pernot, J. Mater. Sci. Lett. 10, 1418 (1991)

    Article  Google Scholar 

  5. I. Nakai, C. Numako, H. Hosono, K. Yamasaki, J. Am. Ceram. Soc. 82, 689 (1999)

    Article  Google Scholar 

  6. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  7. F. d’Acapito, S. Mobilio, G. Battaglin, E. Cattaruzza, F. Gonella, F. Caccavale, P. Mazzoldi, J.R. Regnard, J. Appl. Phys. 87, 1819 (2000)

    Article  ADS  Google Scholar 

  8. J. Perez-Arantegui, J. Molera, A. Larrea, T. Pradell, M. Vendrell-Saz, I. Borgia, B.G. Brunetti, F. Cariati, P. Fermo, M. Mellini, A. Sgamellotti, C. Viti, J. Am. Ceram. Soc. 84, 442 (2001)

    Article  Google Scholar 

  9. S. Padovani, S. Sada, P. Mazzoldi, B. Brunetti, I. Borgia, A. Sgamellotti, A. Giulivi, F. D’Acapito, G. Battaglin, J. Appl. Phys. 93, 10058 (2003)

    Article  ADS  Google Scholar 

  10. M. Grioni, J.F. van Acker, M.T. Czyzyk, J.C. Fuggle, Phys. Rev. B 45, 3309 (1992)

    Article  ADS  Google Scholar 

  11. M. Grioni, J.B. Goedkoop, R. Schorl, F.M.F. de Groot, J.C. Fuggle, F. Schäfers, E.E. Koch, G. Rossi, J.M. Esteva, R.C. Karnatak, Phys. Rev. B 39, 1541 (1989)

    Article  ADS  Google Scholar 

  12. M.C. Rodrigues, Zephyrus, Rev. Pre-Hist. Arquelogía 56, 202 (2003)

    Google Scholar 

  13. M.O. Figueiredo, J.P. Veiga, T. Pereira-da-Silva, Proc. 6th Int. Conf. on Non-destructive Testing and Micro-Analysis for the Diagnostic & Conservation of Environmental Heritage, Rome, ICR & AIPnD 3, 1767 (1999)

  14. M.O. Figueiredo, T.P. Silva, J.P. Veiga, A.M. Dias-Diogo, L. Trindade, Appl. Phys. A 79, 327 (2004)

    Article  ADS  Google Scholar 

  15. A. Simionovici, M. Chukalina, C. Schroer, M. Drakopoulos, A. Snigirev, I. Snigireva, B. Lengeler, K. Janssens, F. Adams, IEEE Trans. Nucl. Sci. 47, 2736 (2000)

    Article  ADS  Google Scholar 

  16. S. Åsbrink, L.J. Norrby, Acta Cryst. B 26, 8 (1970)

    Article  Google Scholar 

  17. G.E. Bacon, D.H. Titterton, Z. Krist. 141, 330 (1975)

    Article  Google Scholar 

  18. F. Zigan, W. Joswig, H.D. Schuster, Z. Krist. 145, 412 (1977)

    Article  Google Scholar 

  19. G. Gattow, J. Zemann, Acta Cryst. 11, 866 (1958)

    Article  Google Scholar 

  20. Strukturberichte, SB I, 153 (1913–1928)

  21. A. Ankudinov, B. Ravel, J.J. Rehr, Manual of the FEFF8. 10 program (The FEFF Project, Univ. Washington, Seattle, USA, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.O. Figueiredo.

Additional information

PACS

61.43.Fs; 61.46.+w; 41.60.Ap; 61.10.Ht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, M., Veiga, J. & MirÃo, J. Modelling the size of red-colouring copper nanoclusters in archaeological glass beads. Appl. Phys. A 83, 499–502 (2006). https://doi.org/10.1007/s00339-006-3521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3521-4

Keywords

Navigation