Skip to main content
Log in

High performance holographic polymer dispersed liquid crystal systems using multi-functional acrylates and siloxane-containing epoxides as matrix components

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High performance transmission holographic polymer dispersed liquid crystals were fabricated using a mixture of radically photopolymerizable multifunctional acrylates and ring-opening photopolymerizable epoxides as monomers for matrix components with Nd:YAG laser (λ=532 nm). Functionality of multifunctional acrylates and concentration of LC were varied to optimize the performance of holographic gratings.

Gratings with much higher diffraction efficiency (83% or 67%, respectively) were obtained from recording solution composed of dipentaerythritol penta/hexaacrylate,1vinyl2pyrrolidone, commercial liquid crystal E7, and 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane with glycidyl function linked with disiloxane, or 1,3-bis[2-(1,2-epoxycyclohex-4-yl)ethyl]-1,1,3,3-tetramethyldisiloxane with cyclohexene oxide function and the same siloxane spacer (45:9:10:36), compared with the ordinary recording solution composed of dipentaerythritol penta/hexaacrylate, 1vinyl2pyrrolidone and E7 (<2%). The recording solution composed of 1,5-bis(3-glycidoxypropyl)-1,1,3,3,5,5-hexamethyltrisiloxane and 1,5-bis[2-(1,2-epoxycyclohex-4-yl)ethyl]-1,1,3,3,5,5-hexamethyltrisiloxane with trisiloxane spacer gave further improved diffraction efficiency (97% and 75%, respectively). Recording solutions contain trisiloxane derivatives gave gratings with considerably or moderately reduced angular deviation (0.83, 0.66 degree for trisiloxane derivatives from 1.2, 0.7 degree for disiloxane derivatives, respectively, for signal beam, and 0.76, 0.70 degree from 1.1, 1.0 degree, respectively, for the reference beam at 32 degree of external incident angle) from Bragg profile, namely 5.2 and 4.5% volume shrinkage for trisiloxane derivatives, and 7.5, 5.6% volume shrinkage for disiloxane derivatives, respectively.

High diffraction efficiency over 95% with angular selectivity of 4.0 degree was obtained for the gratings formed from 1,5-bis[2-(1,2-epoxycyclohex-4-yl)ethyl]-1,1,3,3,5,5-hexamethyltrisiloxane when the concentration of E7 was reduced to 5%. Clearly phase-separated liquid crystal domains were observed by scanning electron microscopy. Grating spacing (about 900 nm) was close to the calculated value (965 nm) by Bragg equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Luther, G.H. Springer, D.A. Higgins, Chem. Mater. 13, 2281 (2001)

    Article  Google Scholar 

  2. Y.H. Cho, B.K. Kim, J.S. Lee, Polymer 41, 1325 (2000)

    Article  Google Scholar 

  3. T. Kyu, D. Nwabunma, Macromolecules 34, 9168 (2001)

    Article  ADS  Google Scholar 

  4. S. Kubo, Z.Z. Gu, K. Takahashi, Y. Ohko, O. Sato, A. Fujishima, J. Am. Chem. Soc. 124, 10950 (2002)

    Article  PubMed  Google Scholar 

  5. P.S. Drzaic, Liquid Crystal Dispersions (World Scientific, New Jersey, 1995)

    Google Scholar 

  6. M.S. Park, Y.H. Cho, B.K. Kim, J.S. Jang, Curr. Appl. Phys. 2, 249 (2002)

    Article  Google Scholar 

  7. D.J. Pikas, S.M. Kirkpatrick, D.W. Tomlin, L. Natarajan, V. Tondiglia, T.J. Bunning, Appl. Phys. A 74, 767 (2002)

    Article  ADS  Google Scholar 

  8. J.A. Jung, B.K. Kim, Opt. Commun. 247, 125 (2005)

    Article  ADS  Google Scholar 

  9. T.J. Bunning, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland, Annu. Rev. Mater. Sci. 30, 83 (2000)

    Article  Google Scholar 

  10. D.E. Lucchetta, L. Criante, F. Simoni, J. Appl. Phys. 93, 9670 (2003)

    Article  ADS  Google Scholar 

  11. R.L. Sutherland, L.V. Natarajan, V.P. Tondiglia, T.J. Bunning, Chem. Mater. 5, 1533 (1993)

    Article  Google Scholar 

  12. M. Jazbinsek, I.D. Olenik, M. Zgonik, A.K. Fontecchio, G.P. Crawford, J. Appl. Phys. 90, 3831 (2001)

    Article  ADS  Google Scholar 

  13. M.S. Park, B.K. Kim, J.C. Kim, Polymer 44, 1595 (2003)

    Article  Google Scholar 

  14. J. Zhang, C.R. Carlen, S. Palmer, M.B. Sponsler, J. Am. Chem. Soc. 116, 7055 (1994)

    Article  Google Scholar 

  15. D.E. Lucchetta, R. Karapinar, A. Manni, F. Simoni, J. Appl. Phys. 91, 6060 (2002)

    Article  ADS  Google Scholar 

  16. Y.H. Cho, C.W. Shin, N. Kim, B.K. Kim, Y. Kawakami, Chem. Mater. 17, 6263 (2005)

    Article  Google Scholar 

  17. Y.H. Cho, M. He, B.K. Kim, Y. Kawakami, Sci. Technol. Adv. Mater. 5, 319 (2004)

    Article  Google Scholar 

  18. Y.H. Cho, R. Kawade, T. Kubota, Y. Kawakami, Sci. Technol. Adv. Mater. 6, 435 (2005)

    Article  Google Scholar 

  19. M. He, Y.H. Cho, N. Kim, Y. Kawakami, Des. Monom. Polym. 8, 473 (2005)

    Article  Google Scholar 

  20. M. He, Y.H. Cho, Y. Kawakami, Polym. J., in press (2006)

  21. J.V. Crivello, D.J. Bi, J. Polym. Sci. Polym. Chem. 31, 2563 (1993)

    Article  Google Scholar 

  22. Z. Gomurashvili, J.V. Crivello, J. Polym. Sci. Polym. Chem. 39, 1187 (2001)

    Article  Google Scholar 

  23. J.V. Crivello, F. Jiang, Chem. Mater. 14, 4858 (2002)

    Article  Google Scholar 

  24. D.A. Waldman, R.T. Ingwall, P.K. Dhal, M.G. Horner, E.S. Kolb, H.-Y.S. Li, R.A. Minns, H.G. Schild, Proc. SPIE 2689, 127 (1995)

    Article  ADS  Google Scholar 

  25. U.S. Rhee, H.J. Caulfield, J. Shamir, C.S. Vikram, M.M. Mirsalehi, Opt. Eng. 32, 1839 (1993)

    Article  ADS  Google Scholar 

  26. F.H. Mok, Opt. Lett. 18, 915 (1993)

    Article  ADS  Google Scholar 

  27. K. Curtis, A. Pu, D. Psaltis, Opt. Lett. 19 (1994)

  28. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969)

    Google Scholar 

  29. G. Montemezzani, M. Zgonik, Phys. Rev. E 55, 1035 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kawakami.

Additional information

PACS

42.40.Eq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Y., Kawakami, Y. High performance holographic polymer dispersed liquid crystal systems using multi-functional acrylates and siloxane-containing epoxides as matrix components. Appl. Phys. A 83, 365–375 (2006). https://doi.org/10.1007/s00339-006-3495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3495-2

Keywords

Navigation