Skip to main content
Log in

Field enhancement factor for an array of MWNTs in CNT paste

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The simulation results of the electric field intensity and the enhancement factor, γ, for an individual CNT imaged as a conducting rod is presented. The field enhancement factor, γ̄, for the CNT paste array is evaluated experimentally by varying the cathode-anode (CA) spacing, d. The simulations indicate that the distribution of electric field intensity and the enhancement factor as a function of cathode-anode spacing, d, could be divided into the two parts: strong (d<100 μm) and weak (d>100 μm) dependences of the enhancement factor γ(d). Furthermore, the field enhancement factor, γ̄, estimated experimentally for the CNT paste FEA indicates that the two-region field emission model (TRFE) is adequate for estimation of the field enhancement factor, γ̄. Moreover, the effective enhancement factor, γ̄, for the CNT paste FEA was found to be ≈50γ and is attributed to the additions of the emission currents from the individual CNTs in an array. In addition, the empiric functions of the geometrical enhancement factor, β̄(d), and γ̄(d) were estimated from the Fowler–Nordheim plot for the CNT paste FEA. One can use the empiric functions β̄(d) and γ̄(d) for the design and fabrication of the devices based on the CNT paste FEA with a variable CA spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. T.J. Vink, M. Gillies, J.C. Kriege, H.W.J.J. van de Laar, Appl. Phys. Lett. 83, 3552 (2003)

    Article  ADS  Google Scholar 

  3. N. Badi, K. He, A. Nair, A. Bensaoula, Technical Digest of the 17th International Vacuum Nanoelectronics Conference, Massachusets Institute of Technology, 11–16 July (Cambridge, USA 2004), pp. 24–25

  4. D.Y. Zhong, G.Y. Zhang, S. Liu: Appl. Phys. Lett. 80, 506 (2002)

    Article  ADS  Google Scholar 

  5. C.J. Edgcombe, U. Valdre, Philos. Mag. B 82, 987 (2002)

    Article  ADS  Google Scholar 

  6. C.J. Edgcombe, U. Valdre, J. Microsc. 203, 188 (2001)

    Article  MathSciNet  Google Scholar 

  7. R.H. Fowler, L.W. Nordheim, Proc. R. Soc. London A 119, 173 (1928)

    Article  ADS  Google Scholar 

  8. W.T. Diamond, J. Vac. Technol. A 16, 707 (1998)

    Article  ADS  Google Scholar 

  9. R.G. Forbes, J. Vac. Technol. B 17, 526 (1999)

    Article  Google Scholar 

  10. J.M. Bonard, M. Croci, C. Klinke, F. Conus, I. Arfaoui, T. Stockli, A. Chatelain, Phys. Rev. B 67, 085412 (2003)

    Article  ADS  Google Scholar 

  11. J.M. Houston, Phys. Rev. 88, 349 (1952)

    Article  ADS  Google Scholar 

  12. R.E. Burgess, H. Kromer, J.M. Houston, Phys. Rev. 90, 515 (1953)

    Article  ADS  Google Scholar 

  13. C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, J. Appl. Phys. 47, 5248 (1976)

    Article  ADS  Google Scholar 

  14. W.P. Dyke, W.W. Dolan, Advances in Electronics and Electron Physics, (Academic, New York, 1956) pp. 89–185

  15. W.P. Dyke, J.K. Trolan, W.W. Dolan, G. Barnes, J. Appl. Phys. 24, 570 (1953)

    Article  ADS  Google Scholar 

  16. R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, 1961)

  17. R.G. Forbes, J. Vac. Sci. Technol. B 17, 526 (1999)

    Article  Google Scholar 

  18. J.M. Bonard, K.A. Dean, B.F. Coll, C. Klinke, Phys. Rev. Lett. 89, 197602-1 (2002)

    Google Scholar 

  19. F.M. Charbonnier, W.A. Mackie, R.L. Hartman, T. Xie, J. Vac. Sci. Technol. B 19, 1064 (2001)

    Article  Google Scholar 

  20. S.K. Kang, J.H. Choi, J.H. Park, J.H. Han, J.B. Yoo, J.W. Nam, C.K. Lee, J.M. Kim, J. Vac. Sci. Technol. B 22, 1345 (2004)

    Article  ADS  Google Scholar 

  21. J.H. Park, G.H. Son, J.S. Moon, J.H. Han, A.S. Berdinsky, D.G. Kuvshinov, J.B. Yoo, C.Y. Park, J. Vac. Sci. Technol. B 23, 749 (2005)

    Article  Google Scholar 

  22. W.J. Zhao, N. Kawakami, A. Sawada, M. Takai, J. Vac. Sci. Technol. B 21, 1734 (2003)

    Article  Google Scholar 

  23. D.H. Kim, C.D. Kim, H.R. Lee, Carbon 42, 1807 (2004)

    Article  Google Scholar 

  24. K.B. Kim, Y.H. Song, C.S. Hwang, C.H. Chung, J.H. Lee, I.S. Choi, J.H. Park, J. Vac. Sci. Technol. B 22, 1331 (2004)

    Article  Google Scholar 

  25. W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill Book Co., New York, 1950)

  26. N.S. Xu, Y. Chen, S.Z. Deng, J. Chen, X.C. Ma, E.G. Wang, J. Phys. D: Appl. Phys. 34, 1597 (2001)

    Article  ADS  Google Scholar 

  27. R. Gao, Z. Pan, Z.L. Wang, Appl. Phys. Lett. 78, 1757 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-B. Yoo.

Additional information

PACS

81.07.De; 85.35.Kt; 79.70.+q; 85.45.Fd; 72.80.Tm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berdinsky, A., Shaporin, A., Yoo, JB. et al. Field enhancement factor for an array of MWNTs in CNT paste. Appl. Phys. A 83, 377–383 (2006). https://doi.org/10.1007/s00339-006-3482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3482-7

Keywords

Navigation