Skip to main content
Log in

Connection of silicon nanocrystals (Si-nc) with multi-walled carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

During the last decade silicon nanocrystals (Si-nc) have received widespread interest because of their high quantum efficiency for light emission at room temperature. However, the challenge still ahead is to study and apply these to single Si-ncoptoelectronics, i.e., solving problems linked with connection and manipulation. In this letter we report on connecting (wiring) single Si-nc with conducting multi-walled carbon nanotubes (MWNTs). We have been able to establish a strong mechanical connection by direct growth of MWNTs on Si-nc used as support of iron nanoparticles, by catalytic chemical vapor deposition (CCVD). To monitor the initial stage of the MWNTs growth process, we used a tapered element oscillating microbalance (TEOM). We compared the growth process on Si-nc coated by iron (Fe/Si-nc) to the standard process of growing MWNTs on alumina as support for iron (Fe/Al). The results showed that in the case of Fe/Si-nc catalyst, we obtained three times larger diameter of multi-walled CNTs compared to Fe/Al. This was mainly due to the Si-nc size. The diameter of the CNTs only depended on the size of the Si-nc particles that rested stuck on the tip of the MWNTs. The connected Si-nc kept their photoluminescence properties at room temperature. The present findings open new opportunities in the development of nanodevices for the optoelectronic application field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 5:354

    Google Scholar 

  2. Tsang SC, Chen YK, Harris PJF, Green MLH (1994) Nature 372:159

    Article  Google Scholar 

  3. Ajayan PM, Iijima S (1993) Nature 361:333

    Article  Google Scholar 

  4. Ugarte D, Stockli T, Bonard JM, Chatelain A, de Heer WA (1998) Appl. Phys. A 67:101

    Article  Google Scholar 

  5. Ajayan PM, Iijima S, Ebbesen TW, Ichihashi T, Tanigaki K, Hiura H (1993) Nature 362:522

    Article  Google Scholar 

  6. Monthioux M (2002) Carbon 40:1809

    Article  Google Scholar 

  7. Ivanov V, Fonseca A, Nagy JB, Lucas A, Lambin P, Bernaerts D, Zhang XB (1995) Carbon 33:1727

    Article  Google Scholar 

  8. Švrček V, Le Normand F, Kleps I, Cracioniou F, Amadou J, Dintzer T, Louis B, Begin D, Pham-Huu C, M-Ledoux J, submitted to J. Phys. Chem. B

  9. Le Normand F, Švrček V, Paillaud JL, Amadou J, Dintzer T, Louis B, Begin D, Pham-Huu C, Ledoux M-J, submitted to J. Phys. Chem. B

  10. de Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179

    Google Scholar 

  11. Baughman R, Zakhidov A, de Heer WA (2002) Science 297:787

    Article  PubMed  Google Scholar 

  12. NATO Proceedings: Towards the First Silicon Laser, Pavesi L, Gaponenko S, Dal Negro L (eds) NATO Science Serries, II. Mathematics: Physics and Chemistry, vol 93 (Kluwer Academic Publishers, 2003)

  13. Pavesi L et al. (2000) Nature 408:440

    Article  PubMed  Google Scholar 

  14. Zacharias H et al. (2000) Phys. Rev. B 62:8391

    Article  Google Scholar 

  15. Nayfeh MH et al. (2001) Appl. Phys. Lett. 78:1131

    Article  Google Scholar 

  16. Chan S et al. (1999) Appl. Phys. Lett. 75:274

    Article  Google Scholar 

  17. Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Phys. Rev. Lett. 82:197

    Article  Google Scholar 

  18. Švrček V, Slaoui A, Muller J-C (2004) J. Appl. Phys. 95:3158

    Article  Google Scholar 

  19. Švrček V, J-Rehspringer L, Gaffet E, Slaoui A, Muller J-C (2005) J. Cryst. Growth 275:589

    Article  Google Scholar 

  20. Švrček V, Slaoui A, Rehspringer J-L, Muller J-C (2003) J. Lumin. 101:269

    Article  Google Scholar 

  21. Luterová K, Dohnalová K, Švrček V, Pelant I, Likforman JP, Cregut O, Gilliot P, Honerlage B (2004) Appl. Phys. Lett. 84:3280

    Article  Google Scholar 

  22. Švrček V, Ersen O, Le Normand F, Dintzer T, Pham-Huu C, Ledoux M-J, submitted to Appl. Phys. Lett. (2005)

  23. Maex K, Van Rossum M (1995) Metal Silicides. INSPEC, Stevenage, p. 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Švrček.

Additional information

PACS

81.07.Bc; 81.07.Lk; 81.07.De

Rights and permissions

Reprints and permissions

About this article

Cite this article

Švrček, V., Ersen, O., Dintzer, T. et al. Connection of silicon nanocrystals (Si-nc) with multi-walled carbon nanotubes. Appl. Phys. A 83, 153–157 (2006). https://doi.org/10.1007/s00339-005-3480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3480-1

Keywords

Navigation