Skip to main content
Log in

Characterization of low pressure chemical vapor deposited polymeric fluorinated carbon m (C:FX)n thin films with low dielectric constant

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermal chemical vapor deposition of fluorinated carbon thin films in the polymeric form is described by hot filament decomposition of the gaseous C3F6O precursor. Decomposition at filament temperatures, ≤450 °C produces films in the ordered (CF2)2n polymeric chain structure as in a tetrafluoroethylene polymer. A composite of (CF2)2n chains structure and crosslinked m(C:Fx)n phases are formed in films deposited at filament temperature ≥600 °C. Polymerization of :CF2 radicals results in (CF2)2n chain structure and the crosslinked phase emerges from a separate process involving reaction among the CF3, CFO and CF3CO radicals and including CF2. Substrate temperature affects both the C-to-F bonding configuration and the relative ratio of the composite phases. Dominant C–CF bonding structure in the low (<-5 °C) substrate temperature films is thermally less stable compared to the C–F structure, which dominates the crosslinked structure in films deposited at high (∼70 °C) substrate temperatures. Dielectric properties of the composite films are studied using the electrical equivalent model and a correlation with the C-to-F bond structure is established. High polymeric (CF2)2n phase determines the electrical impedance and the dielectric constant of the film, and the crosslinked phase imparts structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters L (2000) Semicond. Int. 23:108

    Google Scholar 

  2. Lin XW, Pramanik D (1998) Solid State Technol. 41:63

    Google Scholar 

  3. The National technology Roadmap for Semiconductors (Semicon. Ind. Assoc., San Jose, CA 2003)

  4. Usami T, Shimokawa K, Yoshiaru M (1994) Jpn. J. Appl. Phys. Part I 33:408

    Article  Google Scholar 

  5. Silvis HC, Bouck KJ, Godschalx JP, Niu QJ, Radler MJ, Stokich TM, Lyons JW, Kern BJ, Marshall JG, Syverud K, Leff M (2004) Polymers for Microelectronics and Nanoelectronics, ACS Symposium Series 874. American Chemical Society, Washington, DC, p 187

    Google Scholar 

  6. S. Ukishima, M. Sato, M. Iijima, S. Sasaki, T. Matsuura, F. Yamamoto, Y. Takahashi, DUMIC Conf. (1999) IMIC-444D/99/0267

  7. Wang JH, Chen WJ, Chang TC, Liu PT, Cheng SL, Lin JY, Chen LJ (2003) J. Electrochem. Soc. 150:F141

    Article  Google Scholar 

  8. Chan CT, Chiou BS (2004) J. Mater. Sci. - Mater. El. 15:139

    Google Scholar 

  9. Wu ZC, Shiung ZW, Chiang CC, Wu WH, Chen MC, Jeng SM, Chang W, Chou PF, Jang SM, Yu CH, Liang MS (2001) J. Electrochem. Soc. 148:F115

    Article  Google Scholar 

  10. Han LCM, Pan JS, Chen SM, Balasubramanian N, Shi JN, Wong LS, Foo PD (2001) J. Electrochem. Soc. 148:F148

    Article  Google Scholar 

  11. Zhou H, Shi FG, Zhao B, Yota J (2004) Microelectron. J. 35:571

    Article  Google Scholar 

  12. Moore JA, Lang CI, Lu TM, Yang GR (1995) Polym. Mater. Sci. Eng. 72:437

    Google Scholar 

  13. Senkevich JJ, Desu SB, Simkovic V (2000) Polymer 41:2379

    Article  Google Scholar 

  14. Sharangpani R, Singh R, Drews M, Ivey K (1997) J. Electron. Mater. 26:402

    Google Scholar 

  15. da Costa MMEH, Baumvol IJR, Radke C, Jacobsohn LG, Zamora RRM, Freire FL (2004) J. Vac. Sci. Technol. A 22:2321

    Google Scholar 

  16. Shieh JM, Tsai KC, Suen SC, Dai BT (2002) J. Vac. Sci. Technol. B 20:1388

    Google Scholar 

  17. Biswas N, Harris HR, Wang X, Celebi G, Temkin H, Gangopadhyay S (2001) J. Appl. Phys. 89:4417

    Article  Google Scholar 

  18. Takahashi K, Mitamura T, Ono K, Setsuhara Y, Itoh A, Tachibana K (2003) Appl. Phys. Lett. 82:2476

    Article  Google Scholar 

  19. Lamperti A, Ossi PM (2003) Appl. Surf. Sci. 205:113

    Article  Google Scholar 

  20. Hara T, Sakamoto K, Togoh F, Yang HN, Evans DR (2000) Jap. J. Appl. Phys. Part 2 39:L506

    Google Scholar 

  21. Lungu CP, Lungu AM, Akazawa M, Sakai Y, Sugawara H, Tabata M (1999) Jap. J. Appl. Phys. Part 2 38:L1544

    Google Scholar 

  22. J.-M. Shieh, S.-C. Suen, K.-C.Tsai, B.-T. Dai, T.-C. W, Y.-H. Wu, J. Vac. Sci. Technol. B 19:780 (2001)

    Google Scholar 

  23. Indo K, Tatsumi T (1996) Appl. Phys. Lett. 68:2864

    Article  Google Scholar 

  24. Han LM, Timmons RB, Lee WW (1998) Mater. Res. Soc. Symp. Proc. 511:93

    Google Scholar 

  25. Han SS, Bae BS (2001) J. Electrochem. Soc. 148:F67

    Article  Google Scholar 

  26. Banerjee I, Harker M, Wong L, Coon PA, Gleason KK (1999) J. Electrochem. Soc. 146:2219

    Article  Google Scholar 

  27. Yang H, Tweet DJ, Ma Y, Nguyen T, Evans DR, Hsu ST (1998) Mater. Res. Soc. Symp. Proc. 511:233

    Google Scholar 

  28. Ykomichi H, Masuda A (1999) J. Appl. Phys. 86:2468

    Article  Google Scholar 

  29. Quan YC, Yeo S, Shim C, Yang J, Jung D (2001) J. Appl. Phys. 89:1402

    Article  Google Scholar 

  30. Labelle CB, Lau KKS, Gleason KK (1998) Mater. Res. Soc. Symp. Proc. 511:75

    Google Scholar 

  31. Limb SJ, Edell DJ, Gleason EF, Gleason KK (1998) J. Appl. Polym. Sci. 67:1489

    Article  Google Scholar 

  32. Shieh JM, Tsai KC, Dai BT, Lee SC, H Ying C, Fang YK (2002) J. Electrochem. Soc. 149:G384

    Article  Google Scholar 

  33. Ma Y, Yang H, Guo J, Sathe C, Agui A, Nordgren H (1998) Appl. Phys. Lett. 72:3353

    Article  Google Scholar 

  34. Yang H, Tweet DJ, Ma Y, Nguyen T (1998) Appl. Phys. Lett. 73:1514

    Article  Google Scholar 

  35. Lau KKS, Caufield JA, Gleason KK (2000) Chem. Mater. 12:3032

    Article  Google Scholar 

  36. Lau KKS, K Gleason K (2001) J. Phys. Chem. B. 105:2303

    Article  Google Scholar 

  37. Lau KKS, Caufield JA, Gleason KK (2000) J. Vac. Sci. Technol. A 18:2404

    Google Scholar 

  38. Rastogi AC, Desu SB (2005) Polymer 46:3440

    Article  Google Scholar 

  39. Cramer CJ, Hillmyer MA (1999) J. Org. Chem. 64:4850

    Article  PubMed  Google Scholar 

  40. Lau KKS, Gleason KK, Trout BL (2000) J. Chem. Phys. 113:4103

    Article  Google Scholar 

  41. Lin W, Wiegand BC, Nuzzo RG, Girolami GS (1996) J. Am. Chem. Soc. 118:5977

    Article  Google Scholar 

  42. Jubert AH, Castro EA, Ottavianellie E, Cachau R (1995) J. Mol. Struc. - Theochem. 335:97

    Article  Google Scholar 

  43. Aslandi EB, Zarubin VT, Turishchev YS (1996) Laser Chem. 6:373

    Google Scholar 

  44. Rastogi AC., Desu, S.B., J. Mat. Res. (2005) in press

  45. Golub MA, Wydeven T (2001) In: Fluorinated Surfaces, Coatings and Films, edited by Castner G, Grainger DW, ACS Symposium Series 787. American Chemical Society, Washington, DC, pp 203–212

    Google Scholar 

  46. Roeges NPG (1994) A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Wiley, NY

    Google Scholar 

  47. Sivoththaman S, Jeyakumar R, Nathan A (2002) J. Vac. Sci. Technol. A 20:1149

    Google Scholar 

  48. Jonscher AK (1983) Dielectric Relaxation in Solids. Chelsea Dielectric Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.C. Rastogi.

Additional information

PACS

81.15.Gh; 73.61.Ph; 77.84.Jd; 79.60.Fr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, A., Desu, S. Characterization of low pressure chemical vapor deposited polymeric fluorinated carbon m (C:FX)n thin films with low dielectric constant. Appl. Phys. A 83, 57–66 (2006). https://doi.org/10.1007/s00339-005-3435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3435-6

Keywords

Navigation