Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

Abstract

Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation.

The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engström W (2005) Zool. Sci. 22:273

    Article  PubMed  Google Scholar 

  2. 2.

    Pérez-Rigueiro J, Elices M, Guinea GV (2003) Polymer 44:3733

    Article  Google Scholar 

  3. 3.

    Vollrath F (2000) Mol. Biotechn. 74:67

    Article  Google Scholar 

  4. 4.

    Shao Z, Vollrath F (2002) Nature 418:741

    Article  PubMed  ADS  Google Scholar 

  5. 5.

    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Biomaterials 24:401

    Article  PubMed  Google Scholar 

  6. 6.

    Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y (1995) J. Biomed. Mater. Res. 29:1215

    Article  PubMed  Google Scholar 

  7. 7.

    Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) J. Biomed. Mater. Res. 54:139

    Article  PubMed  Google Scholar 

  8. 8.

    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Biomaterials 23:4131

    Article  PubMed  Google Scholar 

  9. 9.

    Meinel L, Hoffmann S, Karageorgiou V, Zichner L, Langer R, Kaplan DL (2004) Biotechnol. Bioeng. 88:379

    Article  PubMed  Google Scholar 

  10. 10.

    Meinel L, Karageorgiou V, Hoffmann S, Fajardo R, Snyder B, Li L, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2004) J. Biomed. Mater. Res. 71A:25

    Article  Google Scholar 

  11. 11.

    Karageorgiou V, Meinel L, Hoffmann S, Malhotra A, Voloch V, Kaplan DL (2004) J. Biomed. Mater. Res. 71A:528

    Article  Google Scholar 

  12. 12.

    J. Rosenbloom, W.R. Abrams, R. Mecham, Faseb J, 7:1208 (1993)

  13. 13.

    Scheller J, Henggeler D, Viviani A, Conrad U (2004) Transgenic Res. 13:51

    Article  PubMed  Google Scholar 

  14. 14.

    Muller WS, Samuelson LA, Fossey SA, Kaplan DL (1993) Langmuir 9:1857

    Article  Google Scholar 

  15. 15.

    Putthanarat S, Zarkoop S, Magoshi J, Chen JA, Eby RK, Stone M, Adams WW (2002) Polymer 43:3405

    Article  Google Scholar 

  16. 16.

    Zhao C, Yao J, Masuda H, Kishore R, Asakura T (2003) Biopolymers 69:253

    Article  PubMed  Google Scholar 

  17. 17.

    Arai T, Freddi G, Innocenti R, Tsukada M (2004) J. Appl. Polym. Sci. 91:2383

    Article  Google Scholar 

  18. 18.

    Motta A, Fambri L, Migliaresi C (2002) Macromol. Chem. Phys. 203:1658

    Google Scholar 

  19. 19.

    Scheller J, Gührs K-H, Grosse F, Conrad U (2001) Nature Biotechnol. 19:573

    Article  Google Scholar 

  20. 20.

    J. Scheller, U. Conrad, Molecular Farming. Edited by R. Fischer, S. Schillberg (Wiley-VCH 2004) p. 171

  21. 21.

    Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Biochemistry 43:13604

    PubMed  Article  Google Scholar 

  22. 22.

    T. Scheibel, personal communication (2005)

  23. 23.

    Meyer E, Chilkoti A (1999) Nature Biotechnol. 17:1112

    Article  Google Scholar 

  24. 24.

    Zhou C-Z, Confalonieri F, Jacquet M, Rerasso RP, Li Z-G, Janin J (2001) Proteins 44:119

    Article  PubMed  Google Scholar 

  25. 25.

    Johannsmann D (1999) Macromol. Chem. Phys. 200:501

    Google Scholar 

  26. 26.

    T. Chudoba, Haerte 4.5, Asmec GmbH, Radeberg, Germany (www.asmec.de)

  27. 27.

    Phillips M, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, De Long HC, Mantz RA (2004) J. Am. Chem. Soc. 126:14350

    Article  PubMed  Google Scholar 

  28. 28.

    Smith PK, Krohn RI, Hermanson GT, Malla AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal. Biochem. 150:76

    Article  PubMed  Google Scholar 

  29. 29.

    G. Sauerbrey, Arch. Elektrotech. Übertragung 18:617 (1964)

    Google Scholar 

  30. 30.

    Puente Orench I, Putthanarat S, Balta Calleja FJ, Ebby RK, Stone M (2004) Polymer 45:2041

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to U. Spohn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Junghans, F., Morawietz, M., Conrad, U. et al. Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm. Appl. Phys. A 82, 253–260 (2006). https://doi.org/10.1007/s00339-005-3432-9

Download citation

Keywords

  • Atomic Force Microscopy
  • Ionic Liquid
  • Quartz Crystal Microbalance
  • HFIP
  • Silk Protein