Rheological characterization of hydrogels formed by recombinantly produced spider silk


Many fibrous proteins such as spider silks exhibit impressive mechanical properties and are highly biocompatible leading to many potential biomaterial applications. For applications such as tissue engineering, polymer hydrogels have been proposed as an effective means of producing porous but stable scaffolds. Here, nanofiber-based hydrogels were produced from engineered and recombinantly produced spider silk proteins. The silk nanofibers are stable semi-flexible polymers which assemble into hydrogel networks. We studied the hydrogel rheology and determined the concentration dependence of the elastic modulus. AFM images indicate that the nanofibers might assemble into branch-like structures, which would also be consistent with the measured rheological behavior. Since the developed spider silk hydrogels are stable over weeks and show a high elastic modulus at low volume fractions, they are well suited for a broad variety of applications.

This is a preview of subscription content, log in to check access.


  1. 1.

    Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) J. Exp. Biol. 202:3295

    PubMed  Google Scholar 

  2. 2.

    Knight DP, Nash L, Hu XW, Haffegee J, Ho MW (1998) J. Biomed. Mater. Res. 41:185

    PubMed  Article  Google Scholar 

  3. 3.

    Lee KY, Mooney DJ (2001) Chem. Rev. 101:1869

    Article  PubMed  Google Scholar 

  4. 4.

    Jeong B, Kim SW, Bae YH (2002) Adv. Drug Deliver. Rev. 54:37

    Article  Google Scholar 

  5. 5.

    Hoffman AS (2002) Adv. Drug Deliver. Rev. 54:3

    Article  Google Scholar 

  6. 6.

    Shin H, Jo S, Mikos AG (2003) Biomaterials 24:4353

    Article  PubMed  Google Scholar 

  7. 7.

    Drury JL, Mooney DJ (2003) Biomaterials 24:4337

    Article  PubMed  Google Scholar 

  8. 8.

    Ozbas B, Rajagopal K, Schneider JP, Pochan DJ (2004) Phys. Rev. Lett. 93:268106

    Article  PubMed  ADS  Google Scholar 

  9. 9.

    Yokoi H, Kinoshita T, Zhang SG (2005) Proc. Natl. Acad. Sci. USA 102:8414

    Article  PubMed  ADS  Google Scholar 

  10. 10.

    Ayub ZH, Arai M, Hirabayashi K (1993) Biosci. Biotech. Biochem. 57:1910

    Article  Google Scholar 

  11. 11.

    Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M (1995) Chem. Pharm. Bull. 43:284

    PubMed  Google Scholar 

  12. 12.

    Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH (2000) Macromol. Rapid Comm. 21:788

    Article  Google Scholar 

  13. 13.

    Kim UJ, Park JY, Li CM, Jin HJ, Valluzzi R, Kaplan DL (2004) Biomacromolecules 5:786

    Article  PubMed  Google Scholar 

  14. 14.

    Mackintosh FC, Kas J, Janmey PA (1995) Phys. Rev. Lett. 75:4425

    Article  PubMed  ADS  Google Scholar 

  15. 15.

    Guerette PA, Ginzinger DG, Weber BHF, Gosline JM (1996) Science 272:112

    Article  ADS  Google Scholar 

  16. 16.

    Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Biochemistry 43:13604

    PubMed  Article  Google Scholar 

  17. 17.

    Scheibel T (2004) Microb. Cell Fact. 3:14

    Article  PubMed  Google Scholar 

  18. 18.

    Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004) Curr. Biol. 14:2070

    Article  PubMed  Google Scholar 

  19. 19.

    Fancy DA, Kodadek T (1999) Proc. Natl. Acad. Sci. USA 96:6020

    Article  PubMed  ADS  Google Scholar 

  20. 20.

    Oroudjev E, Soares J, Arcdiacono S, Thompson JB, Fossey SA, Hansma HG (2002) Proc. Natl. Acad. Sci. USA 99:6460

    Article  ADS  Google Scholar 

  21. 21.

    Chen X, Knight DP, Vollrath F (2002) Biomacromolecules 3:644

    Article  PubMed  Google Scholar 

  22. 22.

    Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Eur. J. Biochem. 269:4159

    Article  PubMed  Google Scholar 

  23. 23.

    Hinner B, Tempel M, Sackmann E, Kroy K, Frey E (1998) Phys. Rev. Lett. 81:2614

    Article  ADS  Google Scholar 

  24. 24.

    Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003) Phys. Rev. Lett. 91:158302

    Article  PubMed  ADS  Google Scholar 

  25. 25.

    McDermott MK, Chen TH, Williams CM, Markley KM, Payne GF (2004) Biomacromolecules 5:1270

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to T. Scheibel or A.R. Bausch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rammensee, S., Huemmerich, D., Hermanson, K. et al. Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl. Phys. A 82, 261 (2006). https://doi.org/10.1007/s00339-005-3431-x

Download citation


  • Storage Modulus
  • Atomic Force Microscopy Image
  • Polymer Network
  • Persistence Length
  • Silk Protein