Advertisement

Applied Physics A

, 82:261 | Cite as

Rheological characterization of hydrogels formed by recombinantly produced spider silk

  • S. Rammensee
  • D. Huemmerich
  • K.D. Hermanson
  • T. ScheibelEmail author
  • A.R. BauschEmail author
Article

Abstract

Many fibrous proteins such as spider silks exhibit impressive mechanical properties and are highly biocompatible leading to many potential biomaterial applications. For applications such as tissue engineering, polymer hydrogels have been proposed as an effective means of producing porous but stable scaffolds. Here, nanofiber-based hydrogels were produced from engineered and recombinantly produced spider silk proteins. The silk nanofibers are stable semi-flexible polymers which assemble into hydrogel networks. We studied the hydrogel rheology and determined the concentration dependence of the elastic modulus. AFM images indicate that the nanofibers might assemble into branch-like structures, which would also be consistent with the measured rheological behavior. Since the developed spider silk hydrogels are stable over weeks and show a high elastic modulus at low volume fractions, they are well suited for a broad variety of applications.

Keywords

Storage Modulus Atomic Force Microscopy Image Polymer Network Persistence Length Silk Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) J. Exp. Biol. 202:3295PubMedGoogle Scholar
  2. 2.
    Knight DP, Nash L, Hu XW, Haffegee J, Ho MW (1998) J. Biomed. Mater. Res. 41:185PubMedCrossRefGoogle Scholar
  3. 3.
    Lee KY, Mooney DJ (2001) Chem. Rev. 101:1869CrossRefPubMedGoogle Scholar
  4. 4.
    Jeong B, Kim SW, Bae YH (2002) Adv. Drug Deliver. Rev. 54:37CrossRefGoogle Scholar
  5. 5.
    Hoffman AS (2002) Adv. Drug Deliver. Rev. 54:3CrossRefGoogle Scholar
  6. 6.
    Shin H, Jo S, Mikos AG (2003) Biomaterials 24:4353CrossRefPubMedGoogle Scholar
  7. 7.
    Drury JL, Mooney DJ (2003) Biomaterials 24:4337CrossRefPubMedGoogle Scholar
  8. 8.
    Ozbas B, Rajagopal K, Schneider JP, Pochan DJ (2004) Phys. Rev. Lett. 93:268106CrossRefPubMedADSGoogle Scholar
  9. 9.
    Yokoi H, Kinoshita T, Zhang SG (2005) Proc. Natl. Acad. Sci. USA 102:8414CrossRefPubMedADSGoogle Scholar
  10. 10.
    Ayub ZH, Arai M, Hirabayashi K (1993) Biosci. Biotech. Biochem. 57:1910CrossRefGoogle Scholar
  11. 11.
    Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M (1995) Chem. Pharm. Bull. 43:284PubMedGoogle Scholar
  12. 12.
    Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH (2000) Macromol. Rapid Comm. 21:788CrossRefGoogle Scholar
  13. 13.
    Kim UJ, Park JY, Li CM, Jin HJ, Valluzzi R, Kaplan DL (2004) Biomacromolecules 5:786CrossRefPubMedGoogle Scholar
  14. 14.
    Mackintosh FC, Kas J, Janmey PA (1995) Phys. Rev. Lett. 75:4425CrossRefPubMedADSGoogle Scholar
  15. 15.
    Guerette PA, Ginzinger DG, Weber BHF, Gosline JM (1996) Science 272:112CrossRefADSGoogle Scholar
  16. 16.
    Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Biochemistry 43:13604PubMedCrossRefGoogle Scholar
  17. 17.
    Scheibel T (2004) Microb. Cell Fact. 3:14CrossRefPubMedGoogle Scholar
  18. 18.
    Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004) Curr. Biol. 14:2070CrossRefPubMedGoogle Scholar
  19. 19.
    Fancy DA, Kodadek T (1999) Proc. Natl. Acad. Sci. USA 96:6020CrossRefPubMedADSGoogle Scholar
  20. 20.
    Oroudjev E, Soares J, Arcdiacono S, Thompson JB, Fossey SA, Hansma HG (2002) Proc. Natl. Acad. Sci. USA 99:6460CrossRefADSGoogle Scholar
  21. 21.
    Chen X, Knight DP, Vollrath F (2002) Biomacromolecules 3:644CrossRefPubMedGoogle Scholar
  22. 22.
    Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Eur. J. Biochem. 269:4159CrossRefPubMedGoogle Scholar
  23. 23.
    Hinner B, Tempel M, Sackmann E, Kroy K, Frey E (1998) Phys. Rev. Lett. 81:2614CrossRefADSGoogle Scholar
  24. 24.
    Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003) Phys. Rev. Lett. 91:158302CrossRefPubMedADSGoogle Scholar
  25. 25.
    McDermott MK, Chen TH, Williams CM, Markley KM, Payne GF (2004) Biomacromolecules 5:1270CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics, E22-BiophysicsTechnische Universität MünchenGarchingGermany
  2. 2.Department of Organic Chemistry & BiochemistryTechnische Universität MünchenGarchingGermany

Personalised recommendations