Advertisement

Applied Physics A

, Volume 82, Issue 2, pp 243–251 | Cite as

Statistical approaches for investigating silk properties

  • J.P. ZbilutEmail author
  • T. Scheibel
  • D. Huemmerich
  • C.L. Webber Jr.
  • M. Colafranceschi
  • A. Giuliani
Article

Abstract

Amino acid repeats or motifs have engendered interest because of their significance for protein physical characteristics as well as folding properties. Spider dragline silk proteins are unique because they are composed of long repetitive sections and relatively short non-repetitive sections that are known to interact to generate the very peculiar mechanical and solubility properties of silk. Computational analysis compared with in vitro measurements suggest that the silks achieve their unique pattern of extreme solubility inside the spider glands/complete insolubility outside by correlating their repetitive hydrophobic regions through a type of stochastic resonance, generated by the addition of the non-repetitive sequences to a basically periodic hydrophobicity pattern.

Keywords

Stochastic Resonance Recurrence Plot Spider Silk Dragline Silk Laminar Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scheibel T (2004) Microb Cell Factories 3:14CrossRefGoogle Scholar
  2. 2.
    Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) J. Exp. Biol. 202(23):3295PubMedGoogle Scholar
  3. 3.
    Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW (1996) Biophys. J. 71:3442PubMedGoogle Scholar
  4. 4.
    Dicko C, Knight D, Kenney JM, Vollrath F (2004) Biomacromolecules 5:758CrossRefPubMedGoogle Scholar
  5. 5.
    Hronska M, van Beek JD, Williamson PT, Vollrath F, Meier BH (2004) Biomacromolecules 5:834CrossRefPubMedGoogle Scholar
  6. 6.
    Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Eur. J. Biochem. 269:4159CrossRefPubMedGoogle Scholar
  7. 7.
    Sponner A, Unger E, Grosse F, Weisshart K (2004) Biomacromolecules 5:840CrossRefPubMedGoogle Scholar
  8. 8.
    Huemmerich D, Helsen CW, Oschmann J, Rudolph R, Scheibel T (2004) Biochemistry 43:13604PubMedCrossRefGoogle Scholar
  9. 9.
    Uversky VN (2002) Protein Sci. 11:739CrossRefPubMedGoogle Scholar
  10. 10.
    Eisenberg D, Weiss RM, Terwilliger TC (1984) Proc. Natl. Acad. Sci. USA 81:140CrossRefADSGoogle Scholar
  11. 11.
    Murray KB, Gorse D, Thornton JM (2002) J. Mol. Biol. 316:341CrossRefPubMedGoogle Scholar
  12. 12.
    Penel S, Morrison RG, Mortishire-Smith RJ, Doig AJ (1999) J. Mol. Biol. 293:1211CrossRefPubMedGoogle Scholar
  13. 13.
    Rackovsky S (1998) Proc. Natl. Acad. Sci. USA 95:8580CrossRefADSGoogle Scholar
  14. 14.
    Stott K, Blackburn JM, Butler PJG, Perutz M (1995) Proc. Natl. Acad. Sci. USA 92:6509CrossRefADSGoogle Scholar
  15. 15.
    Brillinger D (1981) Time Series: Data Analysis and Theory. Holden-Day, New YorkzbMATHGoogle Scholar
  16. 16.
    Miyazawa S, Jernigen RL (1985) Macromolecules 18:534CrossRefADSGoogle Scholar
  17. 17.
    Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW (1996) Biophys. J. 71:3442PubMedGoogle Scholar
  18. 18.
    Paulsson J, Otto G, Berg OG, Ehrenberg M (2000) Proc. Natl. Acad. Sci. USA 97:7148CrossRefADSGoogle Scholar
  19. 19.
    Alcor D, Croquette V, Jullien L, Lemarchand A (2004) Proc. Natl. Acad. Sci. USA 101:8276CrossRefADSGoogle Scholar
  20. 20.
    Adair RK (2003) Proc. Natl. Acad. Sci. USA 100:12099CrossRefADSGoogle Scholar
  21. 21.
    Hasty J, Collins JJ (2001) Nature 411:30CrossRefPubMedADSGoogle Scholar
  22. 22.
    Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Rev. Mod. Phys. 70:223CrossRefADSGoogle Scholar
  23. 23.
    Carrillo O, Santos MA, Garcia-Ojalvo J, Sancho JM (2004) Europhys. Lett. 65:452CrossRefADSGoogle Scholar
  24. 24.
    Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM (2002) Proc. Natl. Acad. Sci. USA 99:16419CrossRefADSGoogle Scholar
  25. 25.
    Norusis MJ (1985) SPSS-X Advanced Statistics Guide. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Zbilut JP, Mitchell JC, Giuliani A, Colosimo A, Marwan N, Webber CL (2004) Physica A 343:348CrossRefADSGoogle Scholar
  27. 27.
    Dicko C, Vollrath F, Kenney JM (2004) Biomacromolecules 5:704CrossRefPubMedGoogle Scholar
  28. 28.
    J.P. Zbilut, T. Scheibel, D. Huemmerich, C.L. Webber Jr., M. Colafranceschi, A. Giuliani, Phys. Lett. A (2005) DOI: 10.1016/j.physleta.2005.07.072Google Scholar
  29. 29.
    Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Structure 11:1453, available http://us.expasy.org/tools/http://dis.embl.de/ accessed 2005 April 2CrossRefPubMedGoogle Scholar
  30. 30.
    Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004) Curr. Biol. 14:2070CrossRefPubMedGoogle Scholar
  31. 31.
    Sinha N, Nussinov R (2001) Proc. Natl. Acad. Sci. USA 98:3139CrossRefADSGoogle Scholar
  32. 32.
    Zbilut JP, Colosimo A, Conti F, Colafranceschi M, Manetti C, Valerio MC, Webber Jr CL, Giulianii A (2003) Biophys. J. 85:3544PubMedCrossRefGoogle Scholar
  33. 33.
    Valerio MC, Colosimo A, Conti F, Giuliani A, Grottesi A, Manetti C, Zbilut JP (2005) Proteins 58:110CrossRefPubMedGoogle Scholar
  34. 34.
    Buchner J, Kiefhaber T (eds) (2005) Handbook of Protein Folding, vol II. Wiley-VCH, Weinheim pp 193–249Google Scholar
  35. 35.
    Scheibel T (2004) J. Mol. Neurosci. 23:13CrossRefPubMedGoogle Scholar
  36. 36.
    Eckmann JP, Kamphorst SO, Ruelle D (1987) Europhys. Lett. 4:324CrossRefGoogle Scholar
  37. 37.
    Zbilut JP, Webber CL (1992) Phys. Lett. A 171:199CrossRefADSGoogle Scholar
  38. 38.
    Webber CL, Zbilut JP (1994) J. Appl. Physiol. 76:965PubMedGoogle Scholar
  39. 39.
    Marwan N, Thiel M, Nowaczyk NR (2002) Nonlinear Proc. Geophys. 9:325ADSCrossRefGoogle Scholar
  40. 40.
    Marwan N, Wessel N, Meyerfeldt U, Schirdewan A, Kurths J (2002) Phys. Rev. E 66:026702-1CrossRefADSGoogle Scholar
  41. 41.
    Christie OHJ (1995) Chemometr. Intell. Lab. 29:177CrossRefGoogle Scholar
  42. 42.
    Plaxco KW, Simons KT, Baker D (1998) J. Mol. Biol. 277:985CrossRefPubMedGoogle Scholar
  43. 43.
    Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, Finkelstein AV (2003) Protein Sci. 12:2057CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J.P. Zbilut
    • 1
    Email author
  • T. Scheibel
    • 2
  • D. Huemmerich
    • 2
  • C.L. Webber Jr.
    • 3
  • M. Colafranceschi
    • 4
  • A. Giuliani
    • 5
  1. 1.Department of Molecular Biophysics and PhysiologyRush University Medical CenterChicagoUSA
  2. 2.Department of ChemistryTechnische Universität MünchenGarchingGermany
  3. 3.Department of PhysiologyLoyola University Medical CenterMaywoodUSA
  4. 4.Department of Pharmacology and PhysiologyUniversitá “La Sapienza”RomaItaly
  5. 5.Department of Environment and HealthIstituto Superiore di SanitáRomaItaly

Personalised recommendations