Skip to main content

Advertisement

Log in

Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The extraordinary stability and cycle life performance of today’s electrochemical double-layer capacitors (EDLCs) are generally ascribed to the fact that charge storage in activated carbon (AC) is based on pure double-layer charging. In contrast, Faradaic charge-transfer reactions like those occurring in batteries are often connected with dimensional changes, which can affect the cycle life of these storage devices. Here we report the charge-induced height change of an AC electrode in an aprotic electrolyte solution, 1 mol/l (C2H5)4NBF4 (TEABF4) in acetonitrile. The results are compared with those obtained for a graphite electrode in the same electrolyte. For both electrodes, we observe an expansion/contraction of several percent for a potential window of ±2 V vs. the immersion potential (ip). For the EDLC electrode, significant expansion starts at about 1 V remote from the ip and hence is well within the normal EDLC operation range. For the graphite electrode, the height changes are unambiguously caused by intercalation/deintercalation of both anions and cations. The close analogies between the graphite and the EDLC electrode suggest that ion intercalation or insertion processes might play a major role for charge storage, self discharge, cyclability, and the voltage limitation of EDLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus MS, Dresselhaus G (2002) Adv. Phys. 51:1

    Article  ADS  Google Scholar 

  2. Dahn JR, Fong R, Spoon MJ (1990) Phys. Rev. B 42:6424

    Article  ADS  Google Scholar 

  3. Pietronero L, Strässler S (1981) Phys. Rev. Lett. 47:593

    Article  ADS  Google Scholar 

  4. Kertesz M (1985) Mol. Cryst. Liq. Cryst. 126:103

    Article  Google Scholar 

  5. Chan CT, Kamitakahara WA, Ho KM (1987) Phys. Rev. Lett. 58:1528

    Article  ADS  Google Scholar 

  6. Nixon DE, Parry GS (1969) J. Phys. C: Solid State Phys. 2:1732

    Article  ADS  Google Scholar 

  7. Kamitakahara WA, Zarestky JL, Eklund PC (1985) Synth. Met. 12:301

    Article  Google Scholar 

  8. Fischer JE, Kim HJ, Cajipe VB (1987) Phys. Rev. B 36:4449

    Article  ADS  Google Scholar 

  9. Oren Y, Glatt I, Livnat A, Kafri O, Soffer A (1985) J. Electroanal. Chem. 187:59

    Article  Google Scholar 

  10. Oren Y, Soffer A (1986) J. Electroanal. Chem. 206:101

    Article  Google Scholar 

  11. Golub D, Oren Y, Soffer A (1987) Carbon 25:109

    Article  Google Scholar 

  12. Biberacher W, Lerf A, Besenhard JO, Möhwald H, Butz T (1982) Mater. Res. Bull. 17:1385

    Article  Google Scholar 

  13. Besenhard JO, Winter M, Yang J, Biberacher W (1995) J. Power Source 54:228

    Article  ADS  Google Scholar 

  14. Winter M, Wrodnigg GH, Besenhard JO, Biberacher W, Novak P (2000) J. Electrochem. Soc. 147:2427

    Article  Google Scholar 

  15. Ohzuku T, Matoba N, Sawai K (2001) J. Power Source 97–98:73

    Article  ADS  Google Scholar 

  16. DFT User’s Guide v1.03, Micromeritics Instrument Corporation (1993)

  17. Kastening B, Hahn M, Rabanus B, Heins M, Zum Felde U (1997) Electrochim. Acta 42:2789

    Article  Google Scholar 

  18. Hahn M, Baertschi M, Barbieri O, Sauter J-C, Kötz R, Gallay R (2004) Electrochem. Solid-State Lett. A33:7

    Google Scholar 

  19. Besenhard JO, Fritz HP (1974) J. Electroanal. Chem. 53:329

    Article  Google Scholar 

  20. Besenhard JO (1976) Carbon 14:111

    Article  Google Scholar 

  21. Santhanam R, Noel M (1997) J. Power Source 66:47

    Article  ADS  Google Scholar 

  22. Dano C, Simonet J (2004) J. Electroanal. Chem. 564:115

    Article  Google Scholar 

  23. F.P. Campana, Thesis, University of Bern (2005)

  24. Stevens DA, Dahn JR (2001) J. Electrochem. Soc. 148:A803

    Article  Google Scholar 

  25. H. Nakamura M Okamura, in 13th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, FL (Florida Educational Seminars, Boca Raton, FL, 2003), p. 215

  26. Takeuchi M, Koike K, Maruyama T, Mogami A, Okamura M (1998) Electrochemistry 66:1311

    Google Scholar 

  27. Takeuchi M, Maruyama T, Koike K, Mogami A, Oyama T, Kobayashi H (2001) Electrochemistry 69:487

    Article  Google Scholar 

  28. M. Ue, in 8th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, FL (Florida Educational Seminars, Boca Raton, FL, 1998)

  29. Gerischer H (1985) J. Phys. Chem. 89:4249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hahn.

Additional information

PACS

82.47.Uv; 82.45.Fk; 82.45.Gj; 82.80.Fk; 81.05.Uw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, M., Barbieri, O., Campana, F. et al. Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes. Appl. Phys. A 82, 633–638 (2006). https://doi.org/10.1007/s00339-005-3403-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3403-1

Keywords

Navigation