Applied Physics A

, Volume 82, Issue 1, pp 125–130 | Cite as

Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix



Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal–matrix interface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tominaga J, Tsai DP (eds) (2003) Optical Nanotechnologies. Springer, BerlinGoogle Scholar
  2. 2.
    Krasser W, Kettler U, Bechthold PS (1982) Chem. Phys. Lett. 86:223CrossRefADSGoogle Scholar
  3. 3.
    Fedrigo S, Harbich W, Buttet J (1993) J. Chem. Phys. 99:5712CrossRefADSGoogle Scholar
  4. 4.
    König L, Rabin I, Schulze W, Ertl G (1996) Science 274:1353PubMedCrossRefADSGoogle Scholar
  5. 5.
    Rabin I, Schulze W, Ertl G (1998) J. Chem. Phys. 108:5137CrossRefADSGoogle Scholar
  6. 6.
    Félix C, Sieber C, Harbich W, Buttet J, Rabin I, Schulze W, Ertl G (1999) Chem. Phys. Lett. 313:105CrossRefGoogle Scholar
  7. 7.
    Rabin I, Schulze W, Ertl G, Félix C, Sieber C, Harbich W, Buttet J (2000) Chem. Phys. Lett. 320:59CrossRefGoogle Scholar
  8. 8.
    Ievlev D, Rabin I, Schulze W, Ertl G (2000) Chem. Phys. Lett. 328:142CrossRefGoogle Scholar
  9. 9.
    Ievlev D, Rabin I, Schulze W, Ertl G (2001) Eur. Phys. J. D 16:157CrossRefADSGoogle Scholar
  10. 10.
    Schulze W, Rabin I, Ertl G (2004) Chem. Phys. Chem. 5:403PubMedGoogle Scholar
  11. 11.
    Félix C, Sieber C, Harbich W, Buttet J, Rabin I, Schulze W, Ertl G (2001) Phys. Rev. Lett. 86:2992PubMedCrossRefADSGoogle Scholar
  12. 12.
    Sieber C, Buttet J, Harbich W, Félix C, Mitrić R, Bonačić-Koutecký V (2004) Phys. Rev. A 70:041201CrossRefADSGoogle Scholar
  13. 13.
    Federmann F, Hoffmann K, Quaas N, Toennies JP (1999) Eur. Phys. J. D 9:11CrossRefADSGoogle Scholar
  14. 14.
    Diederich T, Tiggesbäumker J, Meiwes-Broer KH (2002) J. Chem. Phys. 116:3263CrossRefADSGoogle Scholar
  15. 15.
    Radcliffe P, Przystawik A, Diederich T, Döppner T, Tiggesbäumker J, Meiwes-Broer KH (2004) Phys. Rev. Lett. 92:173403PubMedCrossRefADSGoogle Scholar
  16. 16.
    Bonačić-Koutecký V, Veyret V, Mitrić R (2001) J. Chem. Phys. 115:10450CrossRefADSGoogle Scholar
  17. 17.
    Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Science 291:103CrossRefPubMedADSGoogle Scholar
  18. 18.
    Peyser LA, Lee T-H, Dickson RM (2002) J. Phys. Chem. B 106:7725CrossRefGoogle Scholar
  19. 19.
    Lee T-H, Gonzalez JI, Dickson RM (2002) Proc. Natl. Acad. Sci. USA 99:10272PubMedCrossRefADSGoogle Scholar
  20. 20.
    Lee T-H, Dickson RM (2003) Proc. Natl. Acad. Sci. USA 100:3043PubMedCrossRefADSGoogle Scholar
  21. 21.
    Lee T-H, Dickson RM (2003) J. Phys. Chem. B 107:7387CrossRefGoogle Scholar
  22. 22.
    Lee T-H, Hladik CR, Dickson RM (2003) Nano Lett. 3:1561CrossRefGoogle Scholar
  23. 23.
    Lee TH, Hladik CR, Dickson RM (2004) Appl. Phys. Lett. 84:118CrossRefADSGoogle Scholar
  24. 24.
    Gleitsmann T, Stegemann B, Bernhardt TM (2004) Appl. Phys. Lett. 84:4050CrossRefADSGoogle Scholar
  25. 25.
    Fayet P, Granzer F, Hegenbart G, Moisar E, Pischel B, Wöste L (1985) Phys. Rev. Lett. 55:3002PubMedCrossRefADSGoogle Scholar
  26. 26.
    Hamilton JF (1988) Adv. Phys. 37:359CrossRefADSGoogle Scholar
  27. 27.
    Eachus RS, Marchetti AP, Muenter AA (1999) Annu. Rev. Phys. Chem. 50:117PubMedCrossRefGoogle Scholar
  28. 28.
    Ball P (1994) Designing the Molecular World. Princeton University Press, PrincetonGoogle Scholar
  29. 29.
    Babel W (1996) Chem. unserer Zeit 30:86CrossRefGoogle Scholar
  30. 30.
    Pan X-Y, Jiang H-B, Liu C-L, Gong Q-H, Zhang X-Y, Zhang Q-F, Xu B-X, Wu J-L (2003) Chin. Phys. Lett. 20:133Google Scholar
  31. 31.
    Maali A, Cardinal T, Treguer-Delapierre T (2003) Physica E 17:559CrossRefADSGoogle Scholar
  32. 32.
    Kreibig U (1986) Z. Phys. D 3:239CrossRefGoogle Scholar
  33. 33.
    Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters. Springer, BerlinGoogle Scholar
  34. 34.
    Kreibig U, Althoff A, Pressmann H (1981) Surf. Sci. 106:308CrossRefGoogle Scholar
  35. 35.
    Hornebebecq V, Antonietti M, Cardinal T, Treguer-Delapierre M (2003) Chem. Mater. 15:1993CrossRefGoogle Scholar
  36. 36.
    Shima T, Tominaga J (2003) J. Vac. Sci. Technol. A 21:634CrossRefADSGoogle Scholar
  37. 37.
    Zheng J, Dickson RM (2002) J. Am. Chem. Soc. 124:13982PubMedCrossRefGoogle Scholar
  38. 38.
    Petty JT, Zheng J, Hud NV, Dickson RM (2004) J. Am. Chem. Soc. 126:5207PubMedCrossRefGoogle Scholar
  39. 39.
    Harbich W, Fedrigo S, Meyer F, Lindsay DM, Lignieres J, Rivoal JC, Kreisle D (1990) J. Chem. Phys. 93:8535CrossRefADSGoogle Scholar
  40. 40.
    Bonačić-Koutecký V, Pittner J, Boiron M, Fantucci P (1999) J. Chem. Phys. 110:3876CrossRefADSGoogle Scholar
  41. 41.
    Bonačić-Koutecký V, private communicationGoogle Scholar
  42. 42.
    Gleitsmann T, Bernhardt TM, to be publishedGoogle Scholar
  43. 43.
    Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) J. Phys. Chem. B 107:9989CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für ExperimentalphysikFreie Universität BerlinBerlinGermany

Personalised recommendations