Skip to main content
Log in

Finite-sized Heisenberg chains and magnetism of one-dimensional metal systems

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a combined experimental and theoretical study of the magnetization of one-dimensional atomic cobalt chains deposited on a platinum surface. We discuss the intrinsic magnetization parameters derived by X-ray magnetic circular dichroism measurements and the observation of ferromagnetic order in one dimension in connection with the presence of strong, dimensionality-dependent anisotropy energy barriers of magnetocrystalline origin. An explicit transfer matrix formalism is developed to treat atomic chains of finite length within the anisotropic Heisenberg model. This model allows us to fit the experimental magnetization curves of cobalt monatomic chains, measured parallel to the easy and hard axes, and provides values of the exchange coupling parameter and the magnetic anisotropy energy consistent with those reported in the literature. The analysis of the spin–spin correlation as a function of temperature provides further insight into the tendency to magnetic order in finite-sized one-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ising E (1925) Z. Phys. 31:253

    Article  ADS  Google Scholar 

  2. Mermin ND, Wagner H (1966) Phys. Rev. Lett. 17:1133

    Article  ADS  Google Scholar 

  3. Bruno P (2001) Phys. Rev. Lett. 87:137203

    Article  ADS  Google Scholar 

  4. de Jongh LJ, Miedema AR (1974) Adv. Phys. 23:1

    Article  ADS  Google Scholar 

  5. Hone DW, Richards PM (1974) Annu. Rev. Mater. Sci. 4:337

    Article  ADS  Google Scholar 

  6. Dingle R, Lines ME, Holt SL (1969) Phys. Rev. 187:643

    Article  ADS  Google Scholar 

  7. Landee CP, Willett RD (1979) Phys. Rev. Lett. 43:463

    Article  ADS  Google Scholar 

  8. Dupas C, Renard JP, Seiden J, Cheikh-Rouhou A (1982) Phys. Rev. B 25:3261

    Article  ADS  Google Scholar 

  9. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Angew. Chem. Int. Edit. 40:1760

    Article  Google Scholar 

  10. Bogani L, Caneschi A, Fedi M, Gatteschi D, Massi M, Novak MA, Pini MG, Rettori A, Sessoli R, Vindigni A (2004) Phys. Rev. Lett. 92:207204

    Article  ADS  Google Scholar 

  11. Clerac R, Miyasaka H, Yamashita M, Coulon C (2002) J. Am. Chem. Soc. 124:12837

    Article  Google Scholar 

  12. Lescouëzec R, Vaissermann J, Ruiz-Pérez C, Lloret F, Carrasco R, Julve M, Verdaguer M, Dromzee Y, Gatteschi D, Wernsdorfer W (2003) Angew. Chem. Int. Edit. 42:1483

    Article  Google Scholar 

  13. Glauber RJ (1963) J. Math. Phys. 4:294

    Article  ADS  MathSciNet  Google Scholar 

  14. Himpsel FJ, Ortega JE, Mankey GJ, Willis RF (1998) Adv. Phys. 47:511

    Article  ADS  Google Scholar 

  15. Elmers HJ, Hauschild J, Höche H, Gradmann U, Bethge H, Heuer D, Köhler U (1994) Phys. Rev. Lett. 73:898

    Article  ADS  Google Scholar 

  16. Shen J, Skomski R, Klaua M, Jenniches H, Sundar Manoharan S, Kirschner J (1997) Phys. Rev. B 56:2340

    Article  ADS  Google Scholar 

  17. Shen J, Klaua M, Ohresser P, Jenniches H, Barthel J, Mohan CV, Kirschner J (1997) Phys. Rev. B 56:11134

    Article  ADS  Google Scholar 

  18. Hauschild J, Elmers HJ, Gradmann U (1998) Phys. Rev. B 57:R677

    Article  ADS  Google Scholar 

  19. Ohresser P, Ghiringhelli G, Tjernberg O, Brookes NB (2000) Phys. Rev. B 62:5803

    Article  ADS  Google Scholar 

  20. Li D, Roldan Cuenya B, Pearson J, Bader SD, Keune W (2001) Phys. Rev. B 64:144410

    Article  ADS  Google Scholar 

  21. Pratzer M, Elmers HJ, Bode M, Pietzsch O, Kubetzka A, Wiesendanger R (2001) Phys. Rev. Lett. 87:127201

    Article  ADS  Google Scholar 

  22. Gambardella P, Blanc M, Bürgi L, Kuhnke K, Kern K (2000) Surf. Sci. 449:93

    Article  ADS  Google Scholar 

  23. Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Eberhardt W, Kern K, Carbone C (2002) Nature 416:301

    Article  ADS  Google Scholar 

  24. Gambardella P (2003) J. Phys.: Condens. Matter 15:S2533

    Article  ADS  Google Scholar 

  25. Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Rusponi S, Ohresser P, Eberhardt W, Carbone C, Kern K (2004) Phys. Rev. Lett. 93:077203

    Article  ADS  Google Scholar 

  26. McGee NWE, Johnson MT, de Vries JJ, aan de Stegge J (1993) J. Appl. Phys. 73:3418

    Article  ADS  Google Scholar 

  27. Gambardella P, Blanc M, Brune H, Kuhnke K, Kern K (2000) Phys. Rev. B 61:2254

    Article  ADS  Google Scholar 

  28. Thole BT, Carra P, Sette F, van der Laan G (1992) Phys. Rev. Lett. 68:1943

    Article  ADS  Google Scholar 

  29. Chen CT, Idzerda YU, Lin H-J, Smith NV, Meigs G, Chaban E, Ho GH, Pellegrin E, Sette F (1995) Phys. Rev. Lett. 75:152

    Article  ADS  Google Scholar 

  30. Carra P, Thole BT, Altarelli M, Wang X (1993) Phys. Rev. Lett. 70:694

    Article  ADS  Google Scholar 

  31. Wu R, Freeman AJ (1994) Phys. Rev. Lett. 73:1994

    Article  ADS  Google Scholar 

  32. Komelj M, Ederer C, Davenport JW, Fähnle M (2002) Phys. Rev. B 66:140407(R)

    Article  ADS  Google Scholar 

  33. Hong J, Wu RQ (2004) Phys. Rev. B 70:060406

    Article  ADS  Google Scholar 

  34. Ederer C, Komelj M, Fähnle M (2003) Phys. Rev. B 68:012407

    Article  Google Scholar 

  35. Lazarovits B, Szunyogh L, Weinberger P (2003) Phys. Rev. B 67:024415

    Article  ADS  Google Scholar 

  36. Hong J, Wu RQ (2003) Phys. Rev. B 67:020406(R)

    Article  ADS  Google Scholar 

  37. Újfalussy B, Lazarovits B, Szunyogh L, Stocks GM, Weinberger P (2004) Phys. Rev. B 70:100404

    Article  ADS  Google Scholar 

  38. Shick AB, Máca F, Oppeneer PM (2004) Phys. Rev. B 69:212410

    Article  ADS  Google Scholar 

  39. Dallmeyer A, Carbone C, Eberhardt W, Pampuch C, Rader O, Gudat W, Gambardella P, Kern K (2000) Phys. Rev. B 61:R5133

    Article  ADS  Google Scholar 

  40. Dorantes-Dávila J, Pastor GM (1998) Phys. Rev. Lett. 81:208

    Article  ADS  Google Scholar 

  41. Zhou L, Wang D, Kawazoe Y (1999) Phys. Rev. B 60:9545

    Article  ADS  Google Scholar 

  42. Félix-Medina R, Dorantes-Dávila J, Pastor GM (2002) New J. Phys. 4:100

    Article  Google Scholar 

  43. Weinert M, Freeman AJ (1983) J. Magn. Magn. Mater. 38:23

    Article  ADS  Google Scholar 

  44. Spišák D, Hafner J (2003) Phys. Rev. B 67:134434

    Article  ADS  Google Scholar 

  45. Pratzer M, Elmers HJ (2002) Phys. Rev. B 67:094416

    Article  ADS  Google Scholar 

  46. Ferrer S, Alvarez J, Lundgren F, Torrelles X, Fajardo P, Boscherini F (1997) Phys. Rev. B 56:9848

    Article  ADS  Google Scholar 

  47. Gradmann U (1993) In: Buschow KHJ (ed) Handbook of Magnetic Materials, vol 7/1. Elsevier, Amsterdam, pp 1–96

    Google Scholar 

  48. Sander D (2004) J. Phys.: Condens. Matter 16:R603

    Article  ADS  Google Scholar 

  49. Gambardella P, Rusponi S, Veronese M, Dhesi SS, Grazioli C, Dallmeyer A, Cabria I, Zeller R, Dederichs PH, Kern K, Carbone C, Brune H (2003) Science 300:1130

    Article  ADS  Google Scholar 

  50. Blume M, Heller P, Lurie NA (1975) Phys. Rev. B 11:4483

    Article  ADS  Google Scholar 

  51. Pandit R, Tannous C (1982) Phys. Rev. B 28:281

    Article  ADS  Google Scholar 

  52. Wortis M (1974) Phys. Rev. B 10:4665

    Article  ADS  Google Scholar 

  53. Pini MG, Rettori A (1988) Phys. Lett. A 127:70

    Article  ADS  Google Scholar 

  54. Pini MG, Rettori A (1989) In: Allia P, Fiorani D, Lanotte L (ed) Fundamental and Applicative Aspects of Disordered Magnetism. World Scientific, Singapore, pp 1–29

    Google Scholar 

  55. Stanley HE (1971) Introduction to Phase Transitions and Critical Phenomena. Clarendon, Oxford

    Google Scholar 

  56. Stroud AH (1971) Approximate Calculation of Multiple Integrals. Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  57. http://www.netlib.org/lapack/

  58. Abramowitz M, Stegun IE (1970) Handbook of Mathematical Functions. Dover, New York

    MATH  Google Scholar 

  59. Fisher ME (1964) Am. J. Phys. 32:343

    Article  ADS  Google Scholar 

  60. Equations (18) and (22) are slightly different when surface spins are involved: e.g. for the magnetization one has 〈S1 α〉=〈SN α〉=(1/ZN)∑nλn N-1anfn, where fn=∫Si αψn(S i)dΩi.

  61. Ruttinger S, Magnan H, Wende H, Le Fevre P, Baberschke K, Chandesris D (2004) Surf. Sci. 548:138

    Article  ADS  Google Scholar 

  62. van Schilfgaarde M, Antropov VP (1999) J. Appl. Phys. 85:4827

    Article  ADS  Google Scholar 

  63. Frôta-Pessoa S, Munizand RB, Kudrnovský J (2000) Phys. Rev. B 62:5293

    Article  ADS  Google Scholar 

  64. Pajda M, Kudrnovský J, Turek I, Drchal V, Bruno P (2000) Phys. Rev. Lett. 85:5424

    Article  ADS  Google Scholar 

  65. Pratzer M, Elmers HJ (2003) Phys. Rev. B 67:094416

    Article  ADS  Google Scholar 

  66. Hinzke D, Nowak U (2000) Phys. Rev. B 61:6734

    Article  ADS  Google Scholar 

  67. Braun H-B (1994) Phys. Rev. B 50:16501

    Article  ADS  Google Scholar 

  68. Braun H-B (1999) J. Appl. Phys. 85:6172

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gambardella.

Additional information

PACS

57.10.Pq; 75.30.-m; 75.30.Gw; 78.70.Dm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vindigni, A., Rettori, A., Pini, M. et al. Finite-sized Heisenberg chains and magnetism of one-dimensional metal systems. Appl. Phys. A 82, 385–394 (2006). https://doi.org/10.1007/s00339-005-3364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3364-4

Keywords

Navigation