Skip to main content
Log in

Diamond surfaces: familiar and amazing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Diamond is the only wide band gap representative of the elemental semiconductors, with a crystal structure identical to its more common relatives silicon and germanium. On first glance one might also expect similar surface properties in terms of reconstructions, surface states, and surface band diagrams. In part, this expectation is indeed fulfilled, but diamond also exhibits a number of unusual and potentially very useful surface properties. Particularly when the surface dangling bonds are saturated by monovalent hydrogen atoms, (donor-like) surface states are removed from the gap, the electron affinity changes sign and becomes negative, and the material becomes susceptible to an unusual type of transfer doping where holes are injected by acceptors located at the surface instead of inside the host lattice. These surface acceptors can in the simplest case be adsorbed molecules conveniently chosen by their electron affinity, but they can also be solvated ions within atmospheric water layers or electrolytes in contact with the hydrogenated diamond surface. The understanding of those phenomena requires in fact concepts of surface science, semiconductor physics, and electrochemistry, which makes the diamond surface a true ‘interdisciplinary’ research topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nebel CE, Ristein J (eds) Thin-Film Diamond I and II (Semicond Semimet 76–77) (Elsevier/Academic, New York, 2003–2004)

  2. Isberg J, Hammersberg J, Johansson E, Mikström T, Twitchen DJ, Whitehead AJ, Coe SE, Scarsbrook GA (2002) Science 297:1670

    Article  ADS  Google Scholar 

  3. Kaiser W, Bond WL (1959) Phys Rev 115:857

    Article  ADS  Google Scholar 

  4. Jiang X et al (1993) Appl Phys Lett 62:3438

    Article  ADS  Google Scholar 

  5. Stoner BR, Glass JT (1992) Appl Phys Lett 60:698

    Article  ADS  Google Scholar 

  6. Schreck M, Roll H, Stritzker B (1999) Appl Phys Lett 74:650

    Article  ADS  Google Scholar 

  7. Kern G, Hafner J, Furthmüller J, Kresse G (1996) Surf Sci 352–354:745

    Article  ADS  Google Scholar 

  8. Graupner R et al (1997) Phys Rev B 55:10841

    Article  Google Scholar 

  9. Graupner R et al (1999) Phys Rev B 60:18023

    Article  Google Scholar 

  10. Frauenheim T et al (1993) Phys Rev B 48:18189

    Article  Google Scholar 

  11. Jing Z, Whitten JL (1994) Surf Sci 314:300

    Article  ADS  Google Scholar 

  12. Zheng JC et al (2001) Diamond Relat Mater 10:500

    Article  ADS  Google Scholar 

  13. Wang YM et al (2000) Diamond Relat Mater 9:1582

    Article  ADS  Google Scholar 

  14. Zheng XM, Smith PV (1992) Surf Sci 262:219

    Article  ADS  Google Scholar 

  15. Pandey KC (1981) Phys Rev Lett 47:1913

    Article  ADS  Google Scholar 

  16. Kern G et al (1996) Surf Sci 366:445; note that Figs. 5 and 7 in this publication have been erroneously exchanged

    Article  ADS  Google Scholar 

  17. M. Marsili, O. Pulci, F. Bechstedt, R. del Sole, Phys. Rev. B, in press

  18. Loh KP et al (2002) Diamond Relat Mater 11:1379

    Article  ADS  Google Scholar 

  19. Hanney NB, Smith CP (1946) J Am Chem Soc 68:171

    Article  Google Scholar 

  20. Topping J (1927) Proc R Soc London 114:67

    Google Scholar 

  21. Maier F, Ristein J, Ley L (2001) Phys Rev B 64:165411/1-7; note that the units of the dipole moment and the exponent of the polarizability of the C-H bonds were mistyped in this publication

    Article  ADS  Google Scholar 

  22. Cui JB, Ristein J, Ley L (1998) Phys Rev Lett 81:429

    Article  ADS  Google Scholar 

  23. Cui JB, Ristein J, Ley L (1999) Phys Rev B 59:5847

    Article  ADS  Google Scholar 

  24. Landstrass IM, Ravi KV (1989) Appl Phys Lett 55:975 and 1391

    Article  ADS  Google Scholar 

  25. Maier F et al (2000) Phys Rev Lett 85:3472

    Article  ADS  Google Scholar 

  26. Ristein J et al (2002) Diamond Relat Mater 11:359

    Article  ADS  Google Scholar 

  27. Takeuchi D et al (2003) Phys Rev B 68:041304(R)

    Article  Google Scholar 

  28. Riedel M et al (2004) Diamond Relat Mater 13:746

    Article  ADS  Google Scholar 

  29. Riedel M et al (2004) Phys Rev B 69:125338

    Article  Google Scholar 

  30. Goss JP et al (2001) J Phys Condens Matter 13:8973

    Article  ADS  Google Scholar 

  31. Strobel P, Riedel M, Ristein J, Ley L (2004) Nature 430:439

    Article  ADS  Google Scholar 

  32. Strobel P, Riedel M, Ristein J, Ley L (2005) Diam Relat Mater 14:451

    Article  ADS  Google Scholar 

  33. Kawarada H (1996) Surf Sci Rep 26:205

    Article  ADS  Google Scholar 

  34. Maier F, Graupner R, Hollering M, Hammer L, Ristein J, Ley L (1999) Surf. Sci. 443:177

    Article  ADS  Google Scholar 

  35. Kern G, Hafner J (1997) Phys. Rev. B 56:4203

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ristein.

Additional information

PACS

68.35.-p; 73.20.-r; 73.25.+i

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ristein, J. Diamond surfaces: familiar and amazing. Appl. Phys. A 82, 377–384 (2006). https://doi.org/10.1007/s00339-005-3363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3363-5

Keywords

Navigation