Applied Physics A

, Volume 82, Issue 3, pp 403–413 | Cite as

Bayesian inference in surface physics

  • U. v. Toussaint
  • V. Dose


Bayesian data analysis provides a consistent method for the extraction of information from physics experiments. The approach provides a unified rationale for data analysis, which both justifies many of the commonly used analysis procedures and reveals some of the implicit underlying assumptions. This paper introduces the general ideas of the Bayesian probability theory with emphasis on the application to the evaluation of experimental data, namely the deconvolution of the apparatus function for improving the energy resolution, the reconstruction of depth profiles from Rutherford backscattering measurements, handling of discordant data sets and mixture modelling for background estimation of Auger data.


Bayesian Inference Maximum Entropy Method Weight Loss Measurement Auger Spectrum Surface Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sivia DS (1996) Data Analysis – A Baysian Tutorial. Clarendon, OxfordGoogle Scholar
  2. 2.
    Leonard T, Hsu JSJ (1999) Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. Cambridge University Press, CambridgezbMATHGoogle Scholar
  3. 3.
    Jeffreys H (1961) Theory of Probability. Oxford University Press, OxfordzbMATHGoogle Scholar
  4. 4.
    Cox RT (1946) Am. J. Phys. 14:1CrossRefzbMATHADSGoogle Scholar
  5. 5.
    Sivia DS, David WIF (1994) Acta Cryst. A 50:703Google Scholar
  6. 6.
    Russell S, Norvig P (2003) Artifical Intelligence: A Modern Approach. Prentice Hall, New JerseyGoogle Scholar
  7. 7.
    Gregory PC (1999) Astrophys. J. 520:361CrossRefADSGoogle Scholar
  8. 8.
    Dose V (2003) Rep. Prog. Phys. 66:1421CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Fröhner FH (2000) Evaluation and Analysis of Nuclear Resonance Data. JEFF Report 18. OECD Nuclear Energy Agency, ParisGoogle Scholar
  10. 10.
    Jaynes ET (1968) IEEE T. Syst. Sci. Cyb. SSC-4:227 (reprinted in Jaynes 1983)CrossRefGoogle Scholar
  11. 11.
    Kendall MG, Moran PAP (1963) Geometrical Probability. Griffin, LondonzbMATHGoogle Scholar
  12. 12.
    Dose V (2003) In: Bayesian Inference and Maximum Entropy Methods in Science and Engineering. In: Williams CJ (ed) Vol. Conf. Proc. 659. AIP, Melville, NY, p 350Google Scholar
  13. 13.
    von Toussaint U, Gori S, Dose V (2004) Appl. Opt. 43:5356CrossRefPubMedADSGoogle Scholar
  14. 14.
    Dose V (2002) CIPS Reprint Series 83:1; Scholar
  15. 15.
    Jaynes ET (1957) Phys. Rev. 106:620CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Jaynes ET (1957) Phys. Rev. 108:171CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Kapur JN, Kesavan HK (1992) Entropy Optimization Principles with Applications. Academic Press, BostonGoogle Scholar
  18. 18.
    Tesmer J, Nastasi M (eds) (1995) Handbook of Modern Ion Beam Analysis. Material Research Society, Pittsburgh, PennsylvaniaGoogle Scholar
  19. 19.
    von der Linden W (1995) Appl. Phys. A 60:155CrossRefADSGoogle Scholar
  20. 20.
    Fischer R, Mayer M, von der Linden W, Dose V (1997) Phys. Rev. E 55:6667CrossRefADSGoogle Scholar
  21. 21.
    Skilling J (1991) In: Buck B, Macauley V (eds) Fundamentals of Maxent in Data Analysis. Clarendon Press, Oxford, p 19Google Scholar
  22. 22.
    Dose V, Fischer R, von der Linden W (1998) In: Erickson G (ed) Maximum Entropy, Bayesian Methods. Kluwer Academic, Dordrecht, p 147Google Scholar
  23. 23.
    Fischer R, Mayer M, von der Linden W, Dose V (1998) Nucl. Instrum. Methods Phys. Res. B 136–138:1140CrossRefGoogle Scholar
  24. 24.
    Mayer M (1999) In: Duggan JL, Morgan I (eds) Proceedings of the 15th International Conference on the Application of accelerators in Research and Industry. Vol. Conf. Proc. 475. AIP, Melville, NY, p 541Google Scholar
  25. 25.
    Mayer M, Fischer R, Lindig S, von Toussaint U, Stark RW, Dose V (2005) Nucl. Instrum. Methods Phys. Res. B 228:349CrossRefADSGoogle Scholar
  26. 26.
    Behrisch R (1988) Phys. Res. 8:569Google Scholar
  27. 27.
    Brooks JN, Alman D, Federici G, Ruzic DN, White DG (1999) J. Nucl. Mater. 266–269:58CrossRefGoogle Scholar
  28. 28.
    Krieger K, von Toussaint U (1999) In: Proc. of the 26th EPS Conference on Controlled Fusion and Plasma Physics. Vol. ECA 23J. Europ. Phys. Soc., Maastricht, p 1529Google Scholar
  29. 29.
    von Toussaint U, Krieger K, Fischer R, Dose V (1999) In: von der Linden W, Dose V, Fischer R, Preuss R (eds) Maximum Entropy and Bayesian Methods. Kluwer Academic Publishers, DordrechtGoogle Scholar
  30. 30.
    von Toussaint U, Fischer R, Krieger K, Dose V (1999) New J. Phys. 1:11CrossRefGoogle Scholar
  31. 31.
    Greogory PC, Loredo TJ (1992) Astrophys. J. 398:146CrossRefADSGoogle Scholar
  32. 32.
    von Keudell A (2002) Thin Solid Films 402:1CrossRefADSGoogle Scholar
  33. 33.
    Dobrozemsky R, Schwarzinger G (1992) J. Vac. Sci. Technol. A 10:2661CrossRefADSGoogle Scholar
  34. 34.
    Schwarz-Selinger T, Preuss R, Dose V, von der Linden W (2001) Int. J. Mass Spectrom. 36:866CrossRefGoogle Scholar
  35. 35.
    Preuss R, Kang H, Schwarz-Selinger T, Dose V (2002) In: Fry RL (ed) Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Vol. Conf. Proc. 617. AIP, Melville, NY, p 155Google Scholar
  36. 36.
    Cornu A, Massot R (1979) Compilation of Mass Spectral Data. Heyden, LondonGoogle Scholar
  37. 37.
    von Toussaint U, Dose V, Golan A (2004) J. Vac. Sci. Technol. A 22:401CrossRefADSGoogle Scholar
  38. 38.
    Roth J, Garcia-Rosales C (1996) Nucl. Fusion 36:1647 with corrigendum Nucl. Fusion 37:897 (1997)CrossRefADSGoogle Scholar
  39. 39.
    Balden M, Roth J (2000) J. Nucl. Mater. 280:39CrossRefADSGoogle Scholar
  40. 40.
    Roth J (1999) J. Nucl. Mater. 266–269:51CrossRefGoogle Scholar
  41. 41.
    Dose V, von der Linden W (1999) In: von der Linden W, Dose V, Fischer R, Preuss R (eds) Maximum Entropy and Bayesian Methods. Kluwer Academic Publishers, DordrechtGoogle Scholar
  42. 42.
    Preuss R, Pecher P, Dose V (2001) In: Smith CR, Rychert J, Erickson G (eds) Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Vol. Conf. Proc. 567. AIP, Melville, NY, p 213Google Scholar
  43. 43.
    Dose V, Preuss R, Roth J (2001) J. Nucl. Mater. 288:153CrossRefADSGoogle Scholar
  44. 44.
    Grote H, Bohmeyer W, Kornejew P, Reiner H-D, Fussmann G, Schlögl R, Weinberg G, Wu CH (1999) J. Nucl. Mater. 266–269:1059Google Scholar
  45. 45.
    Tynan GR (1998) APS-meeting, New OrleansGoogle Scholar
  46. 46.
    Padayachee J, Prozesky VM, von der Linden W, Nkwinika MS, Dose V (1999) Nucl. Instrum. Methods Phys. Res. B 150:129CrossRefADSGoogle Scholar
  47. 47.
    Fischer R, Hanson KM, Dose V, von der Linden W (2000) Phys. Rev. E 61:1152CrossRefADSGoogle Scholar
  48. 48.
    Guglielmetti F, Fischer R, Dose V, Voges W, Boese G (2004) In: Allen MG, Ochsenbein F, Egret D (eds) ASP Conference Series Vols., Astronomical Data Analysis Software and Systems (ADASS) XIII. Vol. CS 314. Strasbourg, page O03.3Google Scholar
  49. 49.
    von der Linden W, Dose V, Padayachee J, Prozesky V (1999) Phys. Rev. E 59:6527CrossRefADSGoogle Scholar
  50. 50.
    Mackenzie D (2004) New Sci. 2453:36Google Scholar
  51. 51.
    Loredo TJ, Chernoff DF (2003) In: Feigelson ED, Babu GJ (eds) Statistical Chalenges in Astronomy. Springer, Berlin, p 57CrossRefGoogle Scholar
  52. 52.
    Fischer R, Dinklage A, Pasch E (2003) Plasma Phys. Contr. F. 45:1095CrossRefADSGoogle Scholar
  53. 53.
    Kang H, Dose V (2003) J. Vac. Sci. Technol. A 21(6):1978CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Max-Planck-Institut fuer PlasmaphysikEURATOM AssociationGarchingGermany

Personalised recommendations