Applied Physics A

, Volume 82, Issue 1, pp 131–137 | Cite as

Tunnelling spectroscopy on silver islands and large deposited silver clusters on Ge(001)

  • K.-L. JonasEmail author
  • V. von Oeynhausen
  • J. Bansmann
  • K.-H. Meiwes-Broer


Morphology and electronic properties of silver islands and deposited silver clusters on Ge(001) have been studied using scanning tunnelling microscopy (STM) and spectroscopy (STS) at low temperatures. Already the clean surface bears an interesting electronic structure, which is obvious from the STS. The tunnelling spectra exhibit strong peaks associated with dangling bond-derived surface states and an antibonding σ-state of the surface dimer. For silver islands of only few monolayers in height, complex spectra are interpreted to be dominated by metal–semiconductor interface states. These islands show energy gaps which are not observed for larger ones beyond 1 nm in height. Spectra of the larger islands contain a series of distinct peaks originating from lateral and three-dimensional electron confinement, respectively. Silver clusters – preformed in the gas phase using a cluster source – have been fabricated, size selected and deposited onto germanium(001). In tunnelling spectra dips at the Fermi level are accompanied by two maxima. These characteristics seem to be almost independent from the cluster size. Additional weak structures are found at higher bias voltages, which are understood in terms of quantized states.


Fermi Level Germanium Scanning Tunnelling Microscopy Scanning Tunnelling Microscopy Image Silver Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heiz U, Schneider W-D (2000) J Phys D 33:R85CrossRefADSGoogle Scholar
  2. 2.
    Liu Y, Nease B, Goldman AM (1992) Phys Rev B 45:10143CrossRefGoogle Scholar
  3. 3.
    Iraji-zad A, Hardiman M (1992) Solid State Commun 83:467CrossRefADSGoogle Scholar
  4. 4.
    Miller T, Rosenwinkel E, Chiang T-C (1984) Phys Rev B 30:570CrossRefADSGoogle Scholar
  5. 5.
    Kushida K, Hattori K, Arai S, Iimori T, Komori F (1999) Surf Sci 442:300CrossRefADSGoogle Scholar
  6. 6.
    Chan LH, Altman EI (2002) Phys Rev B 66:155339CrossRefGoogle Scholar
  7. 7.
    Landemark E, Karlsson CJ, Johansson LSO, Uhrberg RIG (1993) Phys Rev B 49:16523Google Scholar
  8. 8.
    Kubby JA, Griffith JE, Becker RS, Vickers JS (1987) Phys Rev B 36:6079CrossRefADSGoogle Scholar
  9. 9.
    Wormeester H, Wentink DJ, de Boeij PL, Wijers CMJ, van Silfhout A (1993) Phys Rev B 47:12663CrossRefGoogle Scholar
  10. 10.
    Gurlu O, Zandvliet HJ, Poelsema B (2004) Phys Rev Lett 93:066101PubMedCrossRefADSGoogle Scholar
  11. 11.
    Methling R-P, Senz V, Klinkenberg E-D, Diederich T, Tiggesbäumker J, Holzhüter G, Bansmann J, Meiwes-Broer K-H (2001) Eur Phys J D 16:173CrossRefADSGoogle Scholar
  12. 12.
    Bansmann J, Baker S, Binns C, Blackman J, Bucher J, Dorantes-Dávila J, Dupuis V, Favre L, Kechrakos D, Kleibert A, Meiwes-Broer K-H, Pastor G, Perez A, Toulemonde O, Trohidou K, Tuaillon J, Xiec Y (2005) Surf Sci Rep 56:189CrossRefADSGoogle Scholar
  13. 13.
    Methling R-P (2004) PhD thesis, RostockGoogle Scholar
  14. 14.
    Needels M, Payne MC, Joannopoulos JD (1987) Phys Rev Lett 58:1765PubMedCrossRefADSGoogle Scholar
  15. 15.
    Tegenkamp C, Wollschläger J, Pfnür H, Meyer zu Heringdorf F-J, Horn-von Hoegen M (2002) Phys Rev B 65:235316CrossRefGoogle Scholar
  16. 16.
    Krüger P, Mazur A, Pollmann J, Wolfgarten G (1986) Phys Rev Lett 57:1468PubMedCrossRefADSGoogle Scholar
  17. 17.
    Rohlfing M, Krüger P, Pollmann J (1996) Phys Rev B 54:13759CrossRefGoogle Scholar
  18. 18.
    Kevan SD, Stoffel NH (1984) Phys Rev Lett 53:702CrossRefADSGoogle Scholar
  19. 19.
    Northrup J (1992) Phys Rev B 47:10032Google Scholar
  20. 20.
    Matsuda I, Ohta T, Yeom HW (2002) Phys Rev B 65:085327CrossRefGoogle Scholar
  21. 21.
    Li J, Schneider W-D, Berndt R, Crampin S (1998) Phys Rev Lett 80:3332CrossRefADSGoogle Scholar
  22. 22.
    Hövel H, Barke I (2003) New J Phys 5:31.1CrossRefGoogle Scholar
  23. 23.
    Reinert F, Nicolay G, Schmidt S, Ehm D, Hüfner S (2001) Phys Rev B 63:115415CrossRefGoogle Scholar
  24. 24.
    Bartynski RA, Gustafson T (1985) Phys Rev B 33:6588Google Scholar
  25. 25.
    Starenberg K, Herrmann T, Esser N, Sahm J, Richter W (1998) Phys Rev B 58:10207CrossRefGoogle Scholar
  26. 26.
    Altfeder IB, Matveev KA, Chen DM (1997) Phys Rev Lett 78:2815CrossRefADSGoogle Scholar
  27. 27.
    Jiang CS, Yu H-B, Wang X-D, Shih C-K, Ebert P (2001) Phys Rev B 64:235410CrossRefGoogle Scholar
  28. 28.
    Neuhold G, Horn K (1997) Phys Rev Lett 78:1327CrossRefADSGoogle Scholar
  29. 29.
    Nilius N, Kulawik M, Rust H-P, Freund H-J (2004) Surf Sci 572:347CrossRefADSGoogle Scholar
  30. 30.
    Hövel H (2001) Appl Phys A 72:295ADSCrossRefGoogle Scholar
  31. 31.
    Miyano KE, King DM, Spindt CJ, Kendelewics T, Cao R, Yu Z, Lindau I, Spicer WE (1991) Phys Rev B 43:11806CrossRefGoogle Scholar
  32. 32.
    Tersoff J (1984) Phys Rev Lett 52:465CrossRefADSGoogle Scholar
  33. 33.
    Jonas K-L, Bettac A, Rank V, Meiwes-Broer K-H (2000) In: Entel P, Wolf DE (ed) Structure and dynamics of heterogeneous systems. World Scientific, Singapore, pp 59–70Google Scholar
  34. 34.
    Hövel H, Grimm B, Bödecker M, Flieger BRK (2000) Surf Sci Lett 463:603CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • K.-L. Jonas
    • 1
    Email author
  • V. von Oeynhausen
    • 1
  • J. Bansmann
    • 1
  • K.-H. Meiwes-Broer
    • 1
  1. 1.Institut für PhysikUniversität RostockRostockGermany

Personalised recommendations