Applied Physics A

, Volume 81, Issue 8, pp 1613–1618 | Cite as

The coadsorption and interaction of molecular icosahedra with mercury

  • C.C. Ilie
  • S. Balaz
  • L.G. Rosa
  • J. Zhang
  • P. Lunca-Popa
  • C. Bianchetti
  • R. Tittsworth
  • J.I. Brand
  • B. Doudin
  • P.A. Dowben
Rapid communication


We have investigated the changes in the electronic structure of molecularly adsorbed orthocarborane films, as a function of Hg co-adsorption, using photoemission. The interaction between Hg and molecular orthocarborane is weak and results in the formation of some small aggregates of Hg. This behavior is very different from alkali metals interaction with molecular carborane films and the interaction of Hg with semiconducting boron carbide films. Hg doping of semiconducting boron carbide may decrease the activation barrier for intrinsic carrier mobility, but does not significantly increase the number of carriers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robertson BW, Adenwalla S, Harken A, Welsch P, Brand JI, Dowben PA, Claassen JP (2002) Appl Phys Lett 80:3644CrossRefADSGoogle Scholar
  2. 2.
    Robertson BW, Adenwalla S, Harken A, Welsch P, Brand JI, Claassen JP, Boag NM, Dowben PA (2002) In: Anderson IS, Guérard B (eds) Advances in Neutron Scattering Instrumentation. Proc SPIE 4785:226CrossRefADSGoogle Scholar
  3. 3.
    Adenwalla S, Billa R, Brand JI, Day E, Diaz MJ, Harken A, McMullen-Gunn A, Padmanabhan R, Robertson BW (2003) Proc SPIE 5199:70CrossRefADSGoogle Scholar
  4. 4.
    Caruso AN, Billa RB, Balaz S, Brand JI, Dowben PA (2004) J Phys Condens Matter 16:L139CrossRefADSGoogle Scholar
  5. 5.
    Harken AD, Day EE, Robertson BW, Adenwalla S (2005) Jpn J Appl Phys 44:444CrossRefADSGoogle Scholar
  6. 6.
    McIlroy DN (2004) J Phys Condens Matter 16:V13CrossRefADSGoogle Scholar
  7. 7.
    Bell ZW, Carpenter DA, Cristy SS, Lamberti VE, Burger A, Woodfield BF, Niedermayr T, Hau ID, Labov SE, Friedrich S, West WG, Pohl KR, van der Berg L (2005) Phys Stat Solidi c2:1592CrossRefGoogle Scholar
  8. 8.
    Owens A, Peacock A (2004) Nucl Instrum Methods Phys Res A 531:18CrossRefADSGoogle Scholar
  9. 9.
    Martin PM (2004) Vac Coat Technol 6Google Scholar
  10. 10.
    Kasugai Y, Maekawa F, Ikeda Y, Takeuchi H (2001) J Nucl Sci Technol 38:1048CrossRefGoogle Scholar
  11. 11.
    Edwards PP, Johnston JL, Hensel F, Rao CNR, Tunstall DP (1999) Solid State Phys Adv Res Appl 52:229Google Scholar
  12. 12.
    Mott NF (1990) Nonmetal to Metal Transitions. Taylor & Francis, LondonGoogle Scholar
  13. 13.
    Dowben PA (2000) Surf Sci Rep 40:151CrossRefADSGoogle Scholar
  14. 14.
    McIlroy DN, Waldfried C, McAvoy T, Choi J, Dowben PA, Heskett D (1997) Chem Phys Lett 264:168CrossRefADSGoogle Scholar
  15. 15.
    McIlroy DN, Zhang J, Dowben PA, Heskett D (1996) Mater Sci Eng A 217/218:64CrossRefGoogle Scholar
  16. 16.
    McIlroy DN, Zhang J, Dowben PA, Xu P, Heskett D (1995) Surf Sci 328:47CrossRefADSGoogle Scholar
  17. 17.
    Hwang S-D, Yang K, Dowben PA, Ahmad AA, Ianno NJ, Li JZ, Lin JY, Jiang HX, McIlroy DN (1997) Appl Phys Lett 70:1028CrossRefADSGoogle Scholar
  18. 18.
    Takizawa H, Haze N, Okamoto K, Uheda K, Endo T (2002) Mater Res Bull 37:113CrossRefGoogle Scholar
  19. 19.
    Kuhlmann U, Werheit H, Pelloth J, Keune W, Lundstrom T (1995) Phys Stat Solidi B 187:43CrossRefGoogle Scholar
  20. 20.
    Kuhlmann U, Werheit H, Dose T, Lundstrom T (1992) J Alloys Compd 186:187CrossRefGoogle Scholar
  21. 21.
    Werheit H, Schmechel R, Kueffel V, Lundstrom T (1997) J Alloys Compd 262:372CrossRefGoogle Scholar
  22. 22.
    McIlroy DN, Hwang S-D, Yang K, Remmes N, Dowben PA, Ahmad AA, Ianno NJ, Li JZ, Lin JY, Jiang HX (1998) Appl Phys A 67:335CrossRefADSGoogle Scholar
  23. 23.
    Hwang S-D, Remmes NB, Dowben PA, McIlroy DN (1996) J Vac Sci Technol B 14:2957CrossRefGoogle Scholar
  24. 24.
    Hwang S-D, Remmes N, Dowben PA, McIlroy DN (1997) J Vac Sci Technol A 15:854ADSGoogle Scholar
  25. 25.
    Lunca-Popa P, Brand JI, Balaz S, Rosa LG, Boag NM, Bai M, Robertson BR, Dowben PA (2005) J Phys D: Appl Phys 38:1248CrossRefADSGoogle Scholar
  26. 26.
    Caruso AN, Balaz S, Xu B, Dowben PA, McMullen-Gunn AS, Brand JI, Losovyj YB, McIlroy DN (2004) Appl Phys Lett 84:1302CrossRefADSGoogle Scholar
  27. 27.
    Zeng H, Byun D, Zhang J, Vidali G, Onellion M, Dowben PA (1994) Surf Sci 313:239CrossRefADSGoogle Scholar
  28. 28.
    Ilie CC, Lunca-Popa P, Zhang J, Doudin B, Dowben PA (2005) Mater Res Soc Symp Proc 848:FF651Google Scholar
  29. 29.
    Lee S, Dowben PA (1994) Appl Phys A 58:223CrossRefADSGoogle Scholar
  30. 30.
    Lee S, Mazurowski J, Ramseyer G, Dowben PA (1992) J Appl Phys 72:4925CrossRefADSGoogle Scholar
  31. 31.
    Stewart JJP (1989) J Comput Chem 10:209CrossRefGoogle Scholar
  32. 32.
    Stewart JJP (1989) J Comput Chem 10:221CrossRefGoogle Scholar
  33. 33.
    Caruso AN, Bernard L, Xu B, Dowben PA (2003) J Phys Chem B 107:9620CrossRefGoogle Scholar
  34. 34.
    Byun D, S-Hwang D, Zhang J, Zeng H, Perkins FK, Vidali G, Dowben PA (1995) Jpn J Appl Phys Lett 34:L941CrossRefADSGoogle Scholar
  35. 35.
    Balaz S, Losovyj, YaB, Dowben PA () in preparationGoogle Scholar
  36. 36.
    Onellion M, Kime YJ, Dowben PA, Tache N (1987) J Phys C: Solid State Phys 20:L633CrossRefADSGoogle Scholar
  37. 37.
    Dowben PA, Varma S, Kime YJ, Mueller DR, Onellion M (1988) Z Phys B 73:247CrossRefADSGoogle Scholar
  38. 38.
    Xu B, Borca CN, Ducharme S, Sorokin AV, Dowben PA, Fridkin VM, Palto SP, Petukhova N, Yudin SG (2001) J Chem Phys 114:1866CrossRefADSGoogle Scholar
  39. 39.
    Xu B, Choi J, Borca CN, Sorokin AV, Dowben PA, Palto SP, Petukhova N, Yudi SG (2001) Appl Phys Lett 78:448CrossRefADSGoogle Scholar
  40. 40.
    Xu B, Choi J, Caruso AN, Dowben PA (2002) Appl Phys Lett 80:4342CrossRefADSGoogle Scholar
  41. 41.
    Dannetun P, Lögdlund M, Fredriksson C, Lazzaroni R, Fauquet C, Stafström S, Spangler CW, Brédas JL, Salaneck WR (1994) J Chem Phys 100:6765CrossRefADSGoogle Scholar
  42. 42.
    Dannetun P, Boman M, Stafström S, Salaneck WR, Lazzaroni R, Fredriksson C, Brédas JL, Zamboni R, Taliani C (1993) J Chem Phys 99:664CrossRefADSGoogle Scholar
  43. 43.
    Fahlman M, Brédas JL, Salaneck WR (1996) Synth Met 78:237CrossRefGoogle Scholar
  44. 44.
    Ho PS, Hahn PO, Bartha JW, Rubloff GW, LeGoues FK, Silverman BD (1985) J Vac Sci Technol A 3:739ADSGoogle Scholar
  45. 45.
    Lögdlund M, Lazzaroni R, Stafström S, Salaneck WR, Brédas JL (1989) Phys Rev Lett 63:1841CrossRefPubMedADSGoogle Scholar
  46. 46.
    Fahlman M, Beljonne D, Lögdlund M, Friend RH, Holmes AB, Brédas JL, Salaneck WR (1993) Chem Phys Lett 214:327CrossRefADSGoogle Scholar
  47. 47.
    Lögdlund M, Dannetun P, Stafström S, Salaneck WR, Ramsey MG, Spangler CW, Fredricksson C, Brédas JL (1993) Phys Rev Lett 70:970CrossRefPubMedADSGoogle Scholar
  48. 48.
    Miyamae T, Yoshimura D, Ishii H, Ouchi Y, Miyazaki T, Koike T, Yamamoto T, Seki K (1996) J Electron Spectrosc Relat Phenom 78:399CrossRefGoogle Scholar
  49. 49.
    Choi J, Dowben PA, Borca CN, Adenwalla S, Bune AV, Ducharme S, Fridkin VM, Palto SP, Petukhova N (1999) Phys Rev B 59:1819CrossRefADSGoogle Scholar
  50. 50.
    Zheng Z, Diaz M, Knobler CB, Hawthorne MF (1995) J Am Chem Soc 117:12338CrossRefGoogle Scholar
  51. 51.
    Hwang S-D, Byun D, Ianno NJ, Dowben PA, Kim HR (1996) Appl Phys Lett 68:1495CrossRefADSGoogle Scholar
  52. 52.
    Saucedo E, Fornaro L, Sochinskii NV, Cuna A, Granados D, Dieguez E (2004) IEEE Trans Nucl Sci 51:3105CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C.C. Ilie
    • 1
  • S. Balaz
    • 1
  • L.G. Rosa
    • 1
  • J. Zhang
    • 2
    • 3
  • P. Lunca-Popa
    • 1
    • 4
  • C. Bianchetti
    • 5
  • R. Tittsworth
    • 5
  • J.I. Brand
    • 4
  • B. Doudin
    • 1
  • P.A. Dowben
    • 1
  1. 1.Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of PhysicsUniversity of Nebraska – LincolnLincolnUSA
  2. 2.Department of PhysicsFlorida International UniversityMiamiUSA
  3. 3.Center for Materials Research and Analysis, 116 Brace LaboratoryUniversity of Nebraska – LincolnLincolnUSA
  4. 4.College of Engineering and Technology, N104 Walter Scott Engineering Center, 17th and Vine StreetsUniversity of Nebraska – LincolnLincolnUSA
  5. 5.J. Bennett Johnston Sr. Center for Advanced Microstructures and DevicesLouisiana State UniversityBaton RougeUSA

Personalised recommendations