Skip to main content
Log in

Thin ZnO films prepared by chemical solution deposition on glass and flexible conducting substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films of zinc oxide (ZnO) are deposited by a simple method of successive immersion of substrate in (NH4)2ZnO2(0.1 M) chemical solution and in boiling water. Films of a thickness ≈ 500 nm could be deposited on stainless steel and glass by 40 immersions. The composition, structure, optical bandgap and the charge transport mechanism were determined and the results are presented. Films are stoichiometric and have the same hexagonal lattice parameters as for powder samples. Films are formed from grains with a mean size of a few 100 nm. Grains consist of crystallites of mean size 20–30 nm. For films deposited on stainless steel, the crystallites are highly oriented along their c-axis perpendicular to the substrate. Films have a high optical transparency (above 80%) in the visible region and bandgap energy in the range 3.38–3.42 eV. Films are intrinsically n-type and the charge transport across the films is controlled by a shallow trapping level in accordance with the Poole–Frenkel mechanism. The doubly-ionized trapping level has a concentration of 4×1011 cm-3 and zero-field ionization energy of 110 meV. Adsorption of oxygen by annealing the films in air yields a singly-ionized trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Gantwell: Appl. Phys. Lett. 81, 1830 (2002)

    Article  ADS  Google Scholar 

  2. K. Govender, D.S. Boyle, P. O’Brien, D. Binks, D. West, D. Coleman: Adv. Mater. 14, 1221 (2002)

    Article  Google Scholar 

  3. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner: Superlattice Microstruct. 34, 3 (2003)

    Article  ADS  Google Scholar 

  4. Z.L. Wang: J. Phys.: Condens. Matter 16, R829 (2004)

  5. M. Ristov, G.J. Sinadinovski, I. Grozdanov, M. Mitreski: Thin Solid Films 149, 65 (1987)

    Article  ADS  Google Scholar 

  6. A.P. Chatterjee, P. Mitra, A.K. Mukhopadhyay: J. Mater. Sci. 34, 4225 (1999)

    Article  ADS  Google Scholar 

  7. A.E. Jimenez-Gonzailes, P.K. Nair: Semicond. Sci. Technol. 10, 1277 (1995)

    Article  ADS  Google Scholar 

  8. S. Peulon, D. Lincot: J. Electrochem. Soc. 145, 684 (1998)

    Article  Google Scholar 

  9. Y.C. Wang, I.C. Leu, M.H. Hen: Electrochem. Solid State Lett. 5, C53 (2002)

  10. B. Wessler, F.F. Lange, W. Mader: J. Mater. Res. 17, 1644 (2002)

    Article  ADS  Google Scholar 

  11. S.A. Studenikin, Nickolay Golego, M. Cocivera: J. Appl. Phys. 84, 2287 (1998)

    Article  ADS  Google Scholar 

  12. H. He, Y. Wang, Y. Zou, J. Phys. D: Appl. Phys. 36, 2972 (2003)

    Google Scholar 

  13. V. Srikant, D.R. Clarke: J. Appl. Phys. 81, 6357 (1997)

    Article  ADS  Google Scholar 

  14. K. Ellmer, J. Phys. D: Appl. Phys. 33, R17 (2000)

  15. N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Gantwell, D.B. Eason, D.C. Reynolds, D.C. Look: Appl. Phys. Lett. 80, 1334 (2002)

    Article  ADS  Google Scholar 

  16. W.R. Runyan, S.B. Watelski: Handbook of Materials and Processes for Electronics, ed. by C.A. Harper, Chapt. 7 (McGraw-Hill, New York 1970)

  17. A. Ashour: J. Mater. Sci. Mater. Electron. 5, 47 (1994)

    Article  Google Scholar 

  18. B. Qi, D. Kim, D.L. Williamson, J.U. Trefny: J. Electrochem. Soc. 143, 517 (1996)

    Article  Google Scholar 

  19. A.E. Rakhshani, A.S. Azab: Appl. Phys. A 73, 631 (2001)

    Article  ADS  Google Scholar 

  20. L.I. Berger: Semiconductor Materials (CRC press, Boca Raton 1997)

  21. V. Srikant, D.R. Clarke: J. Appl. Phys. 83, 5447 (1998)

    Article  ADS  Google Scholar 

  22. A.E. Rakhshani, B. Pradeep: Appl. Phys. A 79, 2021 (1998)

    Article  ADS  Google Scholar 

  23. J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Natayan: J. Appl. Phys. 85, 7884 (1999)

    Article  ADS  Google Scholar 

  24. C.W. Teng, J.F. Muth, U. Ozgur, M.J. Bergmann, H.O. Everitt, A.K. Sharma, C. Jin, J. Narayan: Appl. Phys. Lett. 76, 979 (2000)

    Article  ADS  Google Scholar 

  25. A.E. Rakhshani, Y. Makdisi, X. Mathew: J. Mater. Sci.: Mater. Electron. 8, 207 (1997)

    Google Scholar 

  26. R.M. Hill: Thin Solid Films 1, 39 (1967)

    Article  ADS  Google Scholar 

  27. T. Yamamoto: Jpn. J. Appl. Phys. 42, L514 (2003)

  28. F.D. Auret, S.A. Goodman, M.J. Legodi, W.E. Meyer: Appl. Phys. Lett. 80, 1340 (2002)

    Article  ADS  Google Scholar 

  29. A.E. Rakhshani: Ph.D.Thesis on Further Studies of Electrical Properties of MIM Structures Using SiO/BaO (Brunel University, UK 1976) p. 10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Rakhshani.

Additional information

PACS

81.15.Lm; 81.05.Dz; 68.37.Hk; 73.61.Ga

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakhshani, A. Thin ZnO films prepared by chemical solution deposition on glass and flexible conducting substrate. Appl. Phys. A 81, 1497–1502 (2005). https://doi.org/10.1007/s00339-005-3288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3288-z

Keywords

Navigation