Advertisement

Applied Physics A

, Volume 81, Issue 7, pp 1451–1454 | Cite as

Piezoelectric cement-based 1-3 composites

  • K.H. LamEmail author
  • H.L.W. Chan
Article

Abstract

This paper presents a new functional material for smart structure applications. Piezoelectric PZT/cement 1-3 composites that have good compatibility with civil engineering structural materials have been studied. The composites with different volume fractions of PZT ranging from 0.25 to 0.77 were fabricated by the dice-and-fill method. It was found that the 1-3 composites have good piezoelectric properties that agreed quite well with theoretical modeling. The thickness electromechanical coupling coefficient could reach 0.55 in the composite with a ceramic volume fraction of 0.25. Those composites have potential to be used as sensors in civil structure health monitoring systems.

Keywords

Acoustic Impedance Electromechanical Coupling Smart Mater Lead Titanate Ceramic Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Culshaw: Artech House, Boston LondonGoogle Scholar
  2. 2.
    S. Aizawa, T. Kakizawa, M. Higasino: Smart Mater. Struct. 7, 617 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    C.K. Soh, K.K-H Tseng, S. Bhalla, A. Gupta: Smart Mater. Struct. 9, 533 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Z.J. Li, D. Zhang, K. Wu: J. Am. Ceram. Soc. 85, 305 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Kim, B. Ko: Smart Mater. Struct., 7, 801 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    P. Janker, M. Christmann, F. Hermle, T. Lorkowski, S. Storm: J. Eur. Ceram. Soc. 19, 1127 (1999)CrossRefGoogle Scholar
  7. 7.
    R.E. Newnham, D.P. Skinner, L.E. Cross: Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  8. 8.
    C.G. Oakley: Applications of Ferroelectrics, IEEE 7th Inter. Symp. 68, 233 (1990)Google Scholar
  9. 9.
    W.A. Smith: Applications of Ferroelectrics, Proc. of the 7th IEEE Inter. Symp. 68, 145 (1990)Google Scholar
  10. 10.
    J.A. Hossack, G. Hayward: IEEE Trans. Ultrason. Ferroelect., Freq. Contr., 38, 618 (1991)CrossRefGoogle Scholar
  11. 11.
    R.E. Newnham, D.P. Skinner, L.E. Cross: Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  12. 12.
    H.L.W. Chan, J. Unsworth: J. Appl. Phys. 65, 1754 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    W.A. Smith, B.A. Auld: IEEE Trans. Ultrason. Ferroelect., Freq. Contr. 38, 40 (1991)CrossRefGoogle Scholar
  14. 14.
    H.L.W. Chan, J. Unsworth: J. Appl. Phys. 65, 1754 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    IEEE standard on piezoelectricity, ANSI/IEEE Std. 176-1987Google Scholar
  16. 16.
    B.E. Read, G.D. Dean: The Determination of Dynamic Properties of Polymers and Composite (Adam Hilger, 1978)Google Scholar
  17. 17.
    A.M. Neville: Properties of concrete (Wiley, New York 1996)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityHunghomChina

Personalised recommendations