Skip to main content
Log in

Characterization of lead-bismuth eutectic nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, lead-bismuth eutectic alloy nanowires were fabricated by a novel vacuum melting method and centrifugal process. An anodic aluminum oxide (AAO) template was used to produce an array of ordered, dense, and continuous Pb-Bi nanowires. Scanning electron microscopy and transmission electron microscopy investigations reveal that nanowires with a diameter of 80 nm are composed of Pb7Bi3 and Bi phases, and have a single orientation of growth. Magnetic susceptibility and hysteresis measurements have been used to characterize the superconductive and magnetic properties of the nanowires. The results show that Pb-Bi nanowires have a slightly lower superconducting transition temperature than Pb-Bi eutectic alloy bulk, and only about 1% superconductivity volume fraction in magnetic fields both perpendicular and parallel to the plate. In magnetization curves, a fairly large hysteresis is observed for both field orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Routkeritch, A.A. Tager, J. Harayama, D. Almawlawi, M. Moskovits, J.M. Xu: IEEE Trans. Electron Devices 43, 1646 (1996)

    Article  Google Scholar 

  2. H.K. Onnes: Commun. Phys. Lab. Univ. Leiden, 120b (1911); 122b (1911); 133d (1913); 139f (1914)

  3. W.J. de Hass, J. Voogd: Commun. Phys. Lab. Univ. Leiden, 208b (1930); 214b(1931)

  4. T. Goto, M. Hayashi: J. J. Appl. Phys. 24, 44 (1986)

    Google Scholar 

  5. T. Goto, A. Mori: J. Mater. Sci 22, 356 (1987)

    Article  Google Scholar 

  6. Y. Tanaka: Physica C335, 69 (2000)

    Google Scholar 

  7. A. Prieto, M.S. Sander, M.S. Martin-Gonzalez, R. Gronsky, T. Sands, A.M. Stacy: J. Am. Chem. Soc. 123, 7160 (2001)

    Article  Google Scholar 

  8. M.S. Sander, A.L. Prieto, R. Gronsjy, T. Sands, A.M. Stacy: Adv. Mater. 14, 665 (2002)

    Article  Google Scholar 

  9. M. Martin-Gonzalez, G.J. Snyder, A.L. Prieto, R. Gronssky, T. Sands, A.M. Stacy: Nano. Lett. 3, 973 (2003)

    Article  Google Scholar 

  10. H. Yu, P.C. Gibbons, W.E. Buhro: J. mater Chem. 14, 595 (2004)

    Article  Google Scholar 

  11. V.S. Chirkin: The Thermophysical Properties of Materials for Nuclear Engineering Moscow (Atomizdat 484 1968)

  12. A.B. Kaplun, V.M. Shulaev, S.P. Linkov, Y.D. Vartanov: Kutateladze Institute of the Thermophysis of the USSR (Academy of Sciences 105 (1979))

  13. B.B. Alchagirov, A.G. Mozgovoy, Kh.B. Khokonov: High Temperature 41, 755 (2003)

    Article  Google Scholar 

  14. Z. Zhang, D. Gekhtman, M.S. Dresselhaus; J.Y. Ying: Chem. Mater. 11, 1659 (1999)

    Article  Google Scholar 

  15. L. Drenchev, J. Sobczak, Modelling Simul: Mater. Sci. Eng. 11, 635 (2003)

    Google Scholar 

  16. V.E. Vergara, N.V. Salazar: J. Mater. Proces. Tech. 63, 765 (1997)

    Article  Google Scholar 

  17. J. Zhanga, Z. Fana: Mater. and Design 21, 149 (2000)

    Article  Google Scholar 

  18. K. Watanabe, O. Miyakawa: Biomater. 24, 1737 (2003)

    Article  Google Scholar 

  19. Y. Nishida, G. Ohira: Acta mater. 47, 841 (1999)

    Article  Google Scholar 

  20. A.R. Putna: Metals Handbook (8th ed. 273 1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.G. Kuo.

Additional information

PACS

81.07.Bc; 81.20.-n; 74.70.Ad

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, C., Hsu, Y., Wu, M. et al. Characterization of lead-bismuth eutectic nanowires. Appl. Phys. A 80, 1501–1504 (2005). https://doi.org/10.1007/s00339-005-3205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3205-5

Keywords

Navigation