Skip to main content
Log in

Nanosize ferroelectric oxides – tracking down the superparaelectric limit

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Free ferroelectric nanoparticles in the order of 10 nm undergo a size driven phase transition into a paraelectric phase. However, in all applications, especially in ferroelectric random access memories, ferroelectric nanograins are integrated into a circuit. They are therefore exposed to new electromechanical boundary conditions e.g. substrate strain and screening of the depolarization field in the electrodes. Carefully adapted to the respective material, some of the extrinsic effects can be used to stabilize ferroelectricity and to shrink the ultimate size. The system performance is very sensitive to the fabrication and processing procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Auciello, J.F. Scott, R. Ramesh: Phys. Today 51, 22 (1998)

    Article  Google Scholar 

  2. S. Li, J.A. Eastman, Z. Li, C.M. Foster, R.E. Newnham, L.E. Cross: Phys. Lett. A 212, 341 (1996)

    Article  ADS  Google Scholar 

  3. V. Nagarajan, A. Stanishevsky, L. Chen, T. Zhao, B.T. Liu, J. Melnagailis, J. Finder, Z. Yu, R. Droopad, K. Eisenbeiser: Appl. Phys. Lett. 81, 4215 (2002)

    Article  ADS  Google Scholar 

  4. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagentsev: Phys. Rev. Lett. 80, 1988 (1998)

    Article  ADS  Google Scholar 

  5. H.P. Sun, W. Tian, X.Q. Pan, J.H. Haeni, D.G. Schlom: Appl. Phys. Lett. 84, 3298 (2004)

    Article  ADS  Google Scholar 

  6. M. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, U. Gösele: Nature Materials 3, 87 (2004)

    Article  ADS  Google Scholar 

  7. R. Waser, A. Rüdiger: Nature Materials 3, 81 (2004)

    Article  ADS  Google Scholar 

  8. K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer: Phys. Rev. Lett. 88, 075508 (2002)

    Article  ADS  Google Scholar 

  9. K. Szot, W. Speier: Phys. Rev. B 60, 5909 (1999)

    Article  ADS  Google Scholar 

  10. S. Hong: Nanoscale Phenomena in Ferroelectric Thin Films, Kluwer Academic Publishers (2004)

  11. W. Ma, D. Hesse: Appl. Phys. Lett. 84, 2871 (2004)

    Article  ADS  Google Scholar 

  12. M. Alexe, C. Harnagea, D. Hesse, U. Gösele: Appl. Phys. Lett. 79, 242 (2001)

    Article  ADS  Google Scholar 

  13. S. Bühlmann, B. Dwir, J. Baborowski, P. Muralt: Appl. Phys. Lett. 80, 3195 (2002)

    Article  ADS  Google Scholar 

  14. A. Roelofs, U. Böttger, R. Waser, F. Schlaphof, S. Trogisch, L.M. Eng: Appl. Phys. Lett. 77, 3444 (2000)

    Article  ADS  Google Scholar 

  15. D.J. Jung, M. Dawber, A. Rüdiger, J.F. Scott, H.H. Kim, K. Kim: Appl. Phys. Lett. 81, 2436 (2002)

    Article  ADS  Google Scholar 

  16. M. Dawber, D.J. Jung, J.F. Scott: Appl. Phys. Lett. 82, 436 (2003)

    Article  ADS  Google Scholar 

  17. S. Tiedke, T. Schmitz, K. Prume, A. Roelofs, T. Schneller, U. Kall, R. Waser, C.S. Ganpule, V. Nagarajan, A. Stanishevsky, R. Ramesh: Appl. Phys. Lett. 79, 3678 (2001)

    Article  ADS  Google Scholar 

  18. F. Peter, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, J. Szade: Appl. Phys. Lett. 85, 2896 (2004)

    Article  ADS  Google Scholar 

  19. R. Moro, X. Xu, S. Yin, W.A. de Heer: Science 300, 1265 (2003)

    Article  ADS  Google Scholar 

  20. T. Portengen, T. Östreich, L.J. Sham: Phys. Rev. B 54, 17452 (1996)

    Article  ADS  Google Scholar 

  21. J. Junquera, P. Ghosez: Nature 422, 506 (2003)

    Article  ADS  Google Scholar 

  22. G. Artl, D. Hennings, G. De With: J. Appl. Phys. 58, 1619 (1985)

    Article  ADS  Google Scholar 

  23. S. Chattopadhyay, P. Syyub, V.R. Palkar, M. Multani: Phys. Rev. B 52, 13177 (1995)

    Article  ADS  Google Scholar 

  24. K. Ishikawa, K. Yoshiwawa, N. Okada: Phys. Rev. B 37, 5852 (1988)

    Article  ADS  Google Scholar 

  25. K. Ishikawa, N. Okada, K. Takada, T. Nomura, M. Hagino: Jpn. J. Appl. Phys. 33, 3495 (1994)

    Article  ADS  Google Scholar 

  26. W.L. Zhong, B.D. Qu, P.L. Zhang, Y.G. Wang: Phys. Rev. B 50, 12375 (1994)

    Article  ADS  Google Scholar 

  27. W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu: Phys. Rev. B 50, 698 (1994)

    Article  ADS  Google Scholar 

  28. C.L. Wang, S.R.P. Smith: J.Phys.: Condens. Matter 7, 7163 (1995)

    ADS  Google Scholar 

  29. Y.G. Wang, W.L. Zhong: Phys. Rev. B 51, 17235 (1995)

    Article  ADS  Google Scholar 

  30. L.H. Ong, J. Osman, D.R. Tiley: Phys. Rev. B 63, 144109 (2001)

    Article  ADS  Google Scholar 

  31. A.M. Bratkovsky, A.P. Levanyuk: Cond-Mat/0402100v3 (2004)

  32. M.M. Saad, P. Baxter, R.M. Bowman, J.M. Gregg, F.D. Morrison, J.F. Scott: J. Phys.: Condens. Matter 16, L451 (2004)

  33. M.M. Saad, R.M. Bowman, J.M. Gregg: Appl. Phys. Lett. 84, 1159 (2004)

    Article  ADS  Google Scholar 

  34. W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li: J. Phys.: Condens. Matter 5, 2619 (1993)

    ADS  Google Scholar 

  35. K.S. Seol, K. Takeuchi, Y. Ohki: Appl. Phys. Lett. 85, 2325 (2004)

    Article  ADS  Google Scholar 

  36. M. Alexe, C. Harnagea, W. Erfurth, D. Hesse, U. Gösele: Appl. Phys. A 70, 247 (2000)

    Article  ADS  Google Scholar 

  37. A. Stanishevsky, S. Aggarwal, A.S. Prakash, J. Melngailis, R. Ramesh: J. Vac. Sci. Technol. B 16, 3899 (1998)

    Article  Google Scholar 

  38. C.S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh: Appl. Phys. Lett. 75, 409 (1999)

    Article  ADS  Google Scholar 

  39. C.S. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melnagailis, E. Williams, V. Joshi, C. Paz de Araujo: Appl. Phys. Lett. 75, 3874 (1999)

    Article  ADS  Google Scholar 

  40. J.K. Lee, T.Y. Kim, I. Chung, S.B. Desu: Appl. Phys. Lett. 75, 334 (1999)

    Article  ADS  Google Scholar 

  41. H. Craighead, L. Schiavone: Appl. Phys. Lett. 48, 1748 (1986)

    Article  ADS  Google Scholar 

  42. S. Okamura, K. Mori, T. Tsukamoto, T. Shiosaki: Integr. Ferroelectr. 18, 311 (1997)

    Article  Google Scholar 

  43. M. Alexe, C. Harnagea, D. Hesse, U. Gösele: Appl. Phys. Lett. 75, 1793 (1999)

    Article  ADS  Google Scholar 

  44. R.W. Schwartz, T. Schneller, R. Waser: C.R. Chimie 7, 433 (2004)

    Article  Google Scholar 

  45. C. Harnagea, M. Alexe, J. Schilling, J. Choi, R.B. Wehrspohn, D. Hesse, U. Gösele: Appl. Phys. Lett. 83, 1827 (2003)

    Article  ADS  Google Scholar 

  46. H.W. Deckmann, J.H. Dunsmuir: Appl. Phys. Lett. 41, 377 (1982)

    Article  ADS  Google Scholar 

  47. J.C. Hulteen, R.P. Van Duyne: J. Vac. Sci. Technol. A 13, 1553 (1995)

    Article  ADS  Google Scholar 

  48. W. Ma, C. Harnagea, D. Hesse, U. Gösele: Appl. Phys. Lett. 83, 3770 (2003)

    Article  ADS  Google Scholar 

  49. A. Seifert, A. Vojta, J.S. Speck, F.F. Lange: J. Mater. Res. 11, 1470 (1996)

    Article  ADS  Google Scholar 

  50. R. Waser, T. Schneller, S. Hoffmann-Eifert, P. Ehrhart: Integr. Ferroelectr. 36, 3 (2001)

    Article  Google Scholar 

  51. A. Roelofs, PhD Thesis “Size Effects in Ferroelectric Thin Films”, Verlag für Wissenschaft und Forschung, Berlin (2004)

  52. I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, M. Alexe: Appl. Phys. Lett. 83, 2211 (2003)

    Article  ADS  Google Scholar 

  53. H. Fujisawa, K. Morimoto, M. Shimizu, H. Niu, K. Honda, S. Ohtani: Jpn. J. Appl. Phys. Part 1 39, 5446 (2000)

    Article  ADS  Google Scholar 

  54. H. Nonomura, H. Fujisawa, M. Shimizu, H. Niu, K. Honda: Jpn. J. Appl. Phys. 42, 5918 (2003)

    Article  ADS  Google Scholar 

  55. H. Fujisawa, M. Okinawa, H. Nonomura, M. Shimizu, H. Niu: J. Eur. Cer. Soc. 24, 1641 (2004)

    Article  Google Scholar 

  56. M. Dawber, I. Szafraniak, M. Alexe, J.F. Scott: J. Phys.: Condens. Matter 15, L667 (2003)

  57. R.S. Williams, G. Medeiros-Ribeiro, T.I. Kamins, D.A.A. Ohlberg: Annu. Rev. Phys. Chem. 51, 527 (2000)

    Article  ADS  Google Scholar 

  58. R.E. Rudd, G.A.D. Briggs, A.P. Sutton, G. Medeiros-Ribeiro, R.S. Williams: Phys. Rev. Lett. 90, 146101 (2003)

    Article  ADS  Google Scholar 

  59. P. Muralt, T. Maeder, L. Sagalowicz, S. Hiboux: J. Appl. Phys. 83, 3835 (1998)

    Article  ADS  Google Scholar 

  60. T. Schneller, R. Waser: Ferroelectrics 267, 293 (2002)

    Article  Google Scholar 

  61. S. Bühlmann, P. Muralt, S. von Allmen: Appl. Phys. Lett. 84, 2614 (2004)

    Article  ADS  Google Scholar 

  62. S. Clemens, T. Schneller, A. van der Hart, F. Peter, R. Waser: submitted

  63. J.J. Urban, J.E. Spanier, L. Ouyang, W.S. Yun, H. Park: Adv. Mater. 15, 423 (2003)

    Article  Google Scholar 

  64. J.J. Urban, W.S. Yun, Q. Gu, H. Park: J. Am. Chem. Soc. 124, 1186 (2002)

    Article  Google Scholar 

  65. F.D. Morrison, Y. Luo, I. Szafraniak, V. Nagarajan, R.B. Wehrspohn, M. Steinhart, J.H. Wendorff, N.D. Zakharov, E.D. Mishina, K.A. Vorotilov, A.S. Sigov, S. Nakabayashi, M. Alexe, R. Ramesh, J.F. Scott: Rev. Adv. Mater. Sci. 4, 114 (2003)

    Google Scholar 

  66. B.A. Hernandez, K.-S. Chang, E.R. Fisher, P.K. Dorhout: Chem. Mater. 14, 480 (2002)

    Article  Google Scholar 

  67. Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe: Appl. Phys. Lett. 83, 440 (2003)

    Article  ADS  Google Scholar 

  68. F.D. Morrison, L. Ramsay, J.F. Scott: J. Phys. Condens. Matter 15, L527 (2003)

  69. M. Alexe, A. Gruverman: Nanoscale Characterization of Ferroelectric Materials, Springer, 2004

  70. C.B. Sawyer, C.H. Tower: Phys. Rev. 35, 269 (1930)

    Article  ADS  Google Scholar 

  71. T. Schmitz, S. Tiedke, K. Prume, C. Szot, A. Roelofs: Polar Oxides (Wiley-VCH 2005) Chapt. 17

  72. K. Amanuma, S. Kobayashi, T. Tatsumi, Y. Maejima, H. Hada, J. Yamada, T. Miwa, H. Koike, H. Toyoshima, T. Kunio: Jpn. J. Appl. Phys. 39, 2098 (2000)

    Article  ADS  Google Scholar 

  73. K. Prume, A. Roelofs, T. Schmitz, B. Reichenberg, S. Tiedke, R. Waser: Jpn. J. Appl. Phys. 41, 7198 (2002)

    Article  ADS  Google Scholar 

  74. T. Schmitz, K. Prume, B. Reichenberg, S. Tiedke, A. Roelofs, R. Waser: J. Eur. Cer. Soc. 24, 1145 (2004)

    Article  Google Scholar 

  75. S.C. Ganpule, V. Nagarajan, B.K. Hill, A.L. Roytburd, E.D. Williams, S.P. Alpay, A. Roelofs, R. Waser, L.M. Eng: Appl. Phys. Lett. 91, 1477 (2002)

    Google Scholar 

  76. A. Roelofs, N.A. Pertsev, R. Waser, F. Schlaphof, L.M. Eng, C. Ganpule, V. Nagarajan, R. Ramesh: Appl. Phys. Lett. 80, 1424 (2003)

    Article  ADS  Google Scholar 

  77. A.L. Kholkin, K.G. Brooks, N. Setter: Appl. Phys. Lett. 71, 2044 (1997)

    Article  ADS  Google Scholar 

  78. A. Gruverman: Appl. Phys. Lett. 75, 1452 (1999)

    Article  ADS  Google Scholar 

  79. K. Ijima, N. Nagano, T. Takeuchi, I. Ueda, Y. Tomita, Y. Tokayama: Mater. Res. Soc. Symp. Proc. 310, 455 (1993)

    Article  Google Scholar 

  80. R. Bruchhaus, D. Pitzer, R. Primig, M. Schreiter, W. Wersing, N. Neumann, N. Heuss, J. Vollheim, R. Köhler, M. Simon: Int. Ferroelectrics 17, 369 (1997)

    Article  Google Scholar 

  81. E. Svidirov, I. Sem, V. Alyoshin, S. Biryukov, V. Dudkevich: Mater. Res. Soc. Symp. Proc 361, 141 (1995)

    Google Scholar 

  82. A.L. Kholkin, K.G. Brooks, D.V. Taylor, S. Hiboux, N. Setter: Int. Ferroelectrics 22, 525 (1998)

    Article  Google Scholar 

  83. A. Gruverman, A. Kholkin, A. Kingon, H. Tokumoto: Appl. Phys. Lett. 78, 2751 (2001)

    Article  ADS  Google Scholar 

  84. A. Gruverman, B.J. Rodriguez, A.I. Kingon, R.J. Nemanich, A.K. Tagentsev, J.S. Cross, M. Tsukada: Appl. Phys. Lett. 83, 728 (2003)

    Article  ADS  Google Scholar 

  85. A. Gruverman, B.J. Rodriguez, A.I. Kingon, R.J. Nemanich, J.S. Cross, M. Tsukada: Appl. Phys. Lett. 82, 3071 (2003)

    Article  ADS  Google Scholar 

  86. S.B. Ren, C.J. Lu, J.S. Liu, H.M. Shen, Y.N. Wang: Phys. Rev. B 54, 14337 (1996)

    Article  ADS  Google Scholar 

  87. A. Roelofs, T. Schneller, K. Szot, R. Waser: Appl. Phys. Lett. 81, 5231 (2002)

    Article  ADS  Google Scholar 

  88. M. Dawber, P. Chandra, P.B. Littlewood, J.F. Scott: J. Phys.: Cond. Matter 15, L393 (2003)

  89. J.H. Li, L. Chen, V. Nagarajan, R. Ramesh, A.L. Roytburd: Appl. Phys. Lett. 84, 2626 (2004)

    Article  ADS  Google Scholar 

  90. M.H. Mört, PhD thesis, RWTH Aachen, 2004

  91. K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer: Phys. Rev. Lett. 88, 075508 (2002)

    Article  ADS  Google Scholar 

  92. S.P. Alpay, I.B. Misirlioglu, V. Nagarajan, R. Ramesh: Appl. Phys. Lett. 85, 2044 (2004)

    Article  ADS  Google Scholar 

  93. A. Roelofs, T. Schneller, K. Szot, R. Waser: Nanotechnology 14, 250 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rüdiger.

Additional information

PACS

77.65; 77.84

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüdiger, A., Schneller, T., Roelofs, A. et al. Nanosize ferroelectric oxides – tracking down the superparaelectric limit. Appl. Phys. A 80, 1247–1255 (2005). https://doi.org/10.1007/s00339-004-3167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3167-z

Keywords

Navigation