Skip to main content
Log in

Effect of monolayer order and dynamics on the electronic transport of molecular wires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article discusses the self assembly of conjugated thiol molecular wires on Au(111) substrates and their charge transport studied by scanning tunneling microscopy and spectroscopy. Molecular resolution imaging of the conjugated thiols show that differences in their structure and inter molecular interactions result in an ordering on gold that is different from the hexagonal symmetry found in alkanethiols. Tunneling spectroscopy on the molecular wires provides information about their intrinsic electronic properties such as the origin of the observed conductance gap and asymmetry in the I–Vs. Further by concurrent topographic and tunneling spectroscopic studies on a conjugated thiol molecule self assembled with and without molecular order, we show that packing and order determine the response of the monolayer to various competing interactions and that the presence of molecular order is very important for reproducible transport measurements. Competing forces between the electric field, intermolecular interactions, tip-molecule physisorption and substrate-molecule chemisorption impact the transport measurements and its reliability. This study points to the fact that molecular electronic devices should be designed to be tolerant to such fluctuations and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Poirer, W.P. Fitts, J.M. White: Langmuir 17, 1176 (2001)

    Article  Google Scholar 

  2. G.E. Poirer, E.D. Pylant: Science 272, 1145 (1996)

    Article  ADS  Google Scholar 

  3. G.M. Whitesides, B. Grzybowski: Science 295, 2418 (2002)

    Article  ADS  Google Scholar 

  4. Y.N. Xia, G.M. Whitesides: Angew. Chem. Int. Ed. Engl. 37, 551 (1998)

    Article  Google Scholar 

  5. R.D. Piner, J. Zhu, F. Xu, S.H. Hong, C.A. Mirkin: Science 283, 661 (1999)

    Article  Google Scholar 

  6. M.-C. Daniel, D. Astruc: Chem. Rev. 104, 293 (2004)

    Article  Google Scholar 

  7. A. Aviram, M.A. Ratner: Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  8. M.A. Ratner: Mater. Today 5, 20 (2002); J.R. Heath, M.A. Ratner: Phys. Today, p.43, May 2003

    Article  Google Scholar 

  9. Focus issue on “Molecular Transport Junctions”, MRS Bulletin 29, June 2004 and references therein

  10. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour: Science 278, 252 (1997)

    Article  Google Scholar 

  11. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, H. v. Löhneysen: Phys. Rev. Lett. 88, 176804 (2002)

    Article  ADS  Google Scholar 

  12. W.J. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park: Nature 417, 725 (2002)

    Article  ADS  Google Scholar 

  13. J. Park, A.N. Pasupathy, J.L. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, D.C. Ralph: Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  14. J. Reichert, H.B. Weber, M. Mayor, H. v. Löhneysen: Appl. Phys. Lett. 82, 4137 (2003)

    Article  ADS  Google Scholar 

  15. Y. Selzer, M.A. Cabassi, T.S. Mayer, D.L. Allara: J. Am. Chem. Soc. 126, 4052 (2004)

    Article  Google Scholar 

  16. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour: Science 286, 1550 (1999)

    Article  Google Scholar 

  17. W. Wang, T. Lee, M.A. Reed: Phys. Rev. B 68, 35416 (2003)

    Article  ADS  Google Scholar 

  18. S. Hong, R. Reifenberger, W. Tian, S. Datta, J. Henderson, C.P. Kubiak: Superlattices Microstruct. 28, 289 (2000)

    Article  ADS  Google Scholar 

  19. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay: Science 294, 571 (2001)

    Article  ADS  Google Scholar 

  20. D.J. Wold, C.D. Frisbie: J. Am. Chem. Soc. 123, 5549 (2001)

    Article  Google Scholar 

  21. T. Ishida, W. Mizutani, Y. Aya, H. Ogiso, S. Sasaki, H. Tokumoto: J. Phys. Chem. B 106, 5886 (2002)

    Article  Google Scholar 

  22. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam: Nano Lett. 5, 55 (2004)

    Article  ADS  Google Scholar 

  23. A. Dhirani, R.W. Zehner, R.P. Hsung, P. G-Sionnest, L.R. Sita: J. Am. Chem. Soc. 118, 3319 (1996)

    Article  Google Scholar 

  24. G. Yang, Y. Qian, C. Engtrakul, L.R. Sita, G. Liu: J. Phys. Chem. B 104, 9059 (2000)

    Article  Google Scholar 

  25. T. Ishida, W. Mizutani, N. Choi, U. Akiba, M. Fujihira, H. Tokumoto: J. Phys. Chem. B 104, 11680 (2000)

    Article  Google Scholar 

  26. J.J. Stapleton, P. Harder, T.A. Daniel, M.D. Reinard, Y. Yao, D.W. Price, J.M. Tour, D.L. Allara: Langmuir 19, 8245 (2003)

    Article  Google Scholar 

  27. Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price, A.M. Rawlett, D.L. Allara, J.M. Tour, P.S. Weiss: Science 292, 2303 (2001)

    Article  Google Scholar 

  28. G.K. Ramachandran, T.J. Hopson, A.M. Rawlett, L.A. Nagahara, A. Primak, S.M. Lindsay: Science 300, 1413 (2003)

    Article  ADS  Google Scholar 

  29. Aldrich, P.O. Box 14508, St. Louis, MO 63178, U.S.A.

  30. For the synthesis procedure see: K. Sonogashira, Y. Tohda, N. Hagihara: Tetrahedron Lett. 50, 4467 (1975); R. Wu, J.S. Schumm, D.L. Pearson, J.M. Tour: J. Org. Chem. 61, 6906 (1996)

    Google Scholar 

  31. R.P. Hsung, C.E.D. Chidsey, L.R. Sita: Organometallics 14, 4808 (1995)

    Article  Google Scholar 

  32. R.P. Hsung, J.R. Babcock, C.E.D. Chidsey, L.R. Sita: Tetrahedron Lett. 36, 4525 (1995)

    Article  Google Scholar 

  33. Molecular Imaging, 4666 Ash Ave., Tempe, AR 85282, U.S.A.

  34. A. Ulman: Chem. Rev. 96, 1533 (1996)

    Article  Google Scholar 

  35. J.M. Tour, L. Jones II, D.L. Pearson, J.J.S. Lamba, T.P. Burgin, G.M. Whitesides, D.L. Allara, A.N. Parikh, S.V. Atre: J. Am. Chem. Soc. 117, 9529 (1995)

    Article  Google Scholar 

  36. Oxford Instruments mini cryo STM, Tubney Woods, Abingdon, Oxon, OX13 5QX, U.K.

  37. SE 500 ellipsometer/reflectometer, Micro Photonics Inc., 101 Derby Street, Suite 203, Hingham, MA 02043, U.S.A.

  38. Alfa Aesar, 26 Parkridge Road, Ward Hill, MA 01835, U.S.A.

  39. A. Ulman: An Introduction to Ultrathin Organic Films from Langmuir–Blodgett to Self-Assembly (Academic Press, San Diego 1991)

  40. L.H. Dubois, R.G. Nuzzo: Ann. Rev. Phys. Chem. 43, 437 (1992)

    Article  ADS  Google Scholar 

  41. G.E. Poirier: Chem. Rev. 97, 1117 (1997) and references therein

    Article  Google Scholar 

  42. C. Schonenberger, J.A.M. Sondag-Huethorst, J. Jorritsma, L.G.J. Fokkink: Langmuir 10, 611 (1994)

    Article  Google Scholar 

  43. C.A. McDermott, M.T. McDermott, J -B. Green, M.D. Porter: J. Phys. Chem. 99, 13257 (1995)

    Article  Google Scholar 

  44. R.A. Wassel, R.R. Fuierer, N. Kim, C.B. Gorman: Nano. Lett. 3, 1617 (2003)

    Article  ADS  Google Scholar 

  45. A.M. Bratkovsky, P.E. Kornilovitch: Phys. Rev. B 67, 115307 (2003)

    Article  ADS  Google Scholar 

  46. S. Kramer, R.R. Fuierer, C.B. Gorman: Chem. Rev. 103, 4367 (2003)

    Article  ADS  Google Scholar 

  47. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak: Phys. Rev. Lett. 79, 2530 (1997); W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak: J. Chem. Phys. 109, 2874 (1998)

    Article  ADS  Google Scholar 

  48. Y. Xue, M.A. Ratner: Phys. Rev. B 68, 115406 (2003)

    Article  ADS  Google Scholar 

  49. A.W. Ghosh, F. Zahid, P.S. Damle, S. Datta: Phys. Rev. B 70, 245317 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetha R. Dholakia.

Additional information

PACS

68.37.Ef; 73.63.-b; 81.16.Dn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dholakia, G., Fan, W. & Meyyappan, M. Effect of monolayer order and dynamics on the electronic transport of molecular wires. Appl. Phys. A 80, 1215–1223 (2005). https://doi.org/10.1007/s00339-004-3165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3165-1

Keywords

Navigation