Defect-tolerant demultiplexers for nano-electronics constructed from error-correcting codes

Abstract

We present a defect-tolerant methodology for the interconnect from conventional microelectronics to nano-electronic circuits. A relatively small amount of redundancy is added to a conventional demultiplexer that enables a specific element in an array of nano-wires to be addressed even if one or more connections to that nano-wire are defective. The k-bit address for each nano-wire is extended to a k+s-bit address by appending s check bits generated by an encoder. We demonstrate a systematic strategy for selecting effective encoding functions, based on error-correcting codes commonly used for digital data transmission. Small numbers of redundant address wires can provide significant protection from fabrication errors at the nano-scale in order to attain desired manufacturing yields. This coding gain can translate into significant economic gains in manufacturing costs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams: Science 280, 1716 (1998)

    Article  Google Scholar 

  2. 2.

    K. Nikolic, A. Sadek, M. Forshaw: Nanotechnology 13, 357 (2002)

    ADS  Article  Google Scholar 

  3. 3.

    J. Han, P. Jonker: Nanotechnology 14, 224 (2003)

    ADS  Article  Google Scholar 

  4. 4.

    P.J. Kuekes, R.S. Williams, J.R. Heath: US Patent No. 6 128 214 (2000)

  5. 5.

    C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Science 285, 391 (1999)

    Article  Google Scholar 

  6. 6.

    J.R. Heath, P.J. Kuekes, R.S. Williams: US Patent No. 6 459 095 (2002)

  7. 7.

    Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath: Chem. Phys. Chem. 3, 519 (2002)

    Google Scholar 

  8. 8.

    Y. Chen, G.-Y. Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, R.S. Williams: Nanotechnology 14, 462 (2003)

    ADS  Article  Google Scholar 

  9. 9.

    Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, D.L. Olynick, E. Anderson: Appl. Phys. Lett 82, 1610 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber: Science 302, 1377 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    A. DeHon: IEEE Trans. Nanotechnol. 2, 23 (2003)

    ADS  Article  Google Scholar 

  12. 12.

    F.J. MacWilliams, N.J.A. Sloane: The Theory of Error-Correcting Codes (North-Holland, New York 1990)

  13. 13.

    S.B. Wicker: Error Control Systems for Digital Communication and Storage (Prentice-Hall, Upper Saddle River 1995)

  14. 14.

    D. Jaffe web site: ‘Information about binary linear codes’, http://www.math.unl.edu/∼djaffe/codes/webcodes/codeform.html

  15. 15.

    P.J. Kuekes, W. Robinett, G. Seroussi, R.S. Williams: ‘Defect-Tolerant Interconnect to Nanoelectronic Circuits: Internally Redundant Demultiplexers Based on Error-Correcting Codes’, submitted to Nanotechnology (2004)

  16. 16.

    International Technology Roadmap for Semiconductors, 2003 edn., http://blic.itrs.net

  17. 17.

    J. von Neumann: ‘Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components’. In: Automata Studies, ed. by C.E. Shannon, J. McCarthy (Princeton University Press, Princeton, NJ, USA 1956) pp. 43–98

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Stanley Williams.

Additional information

PACS

02.50.-r; 85.35.-p

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuekes, P., Robinett, W., Seroussi, G. et al. Defect-tolerant demultiplexers for nano-electronics constructed from error-correcting codes. Appl. Phys. A 80, 1161–1164 (2005). https://doi.org/10.1007/s00339-004-3164-2

Download citation

Keywords

  • Thin Film
  • Operating Procedure
  • Electronic Material
  • Data Transmission
  • Digital Data