Applied Physics A

, Volume 80, Issue 6, pp 1161–1164 | Cite as

Defect-tolerant demultiplexers for nano-electronics constructed from error-correcting codes

  • P.J. Kuekes
  • W. Robinett
  • G. Seroussi
  • R. Stanley Williams
Article

Abstract

We present a defect-tolerant methodology for the interconnect from conventional microelectronics to nano-electronic circuits. A relatively small amount of redundancy is added to a conventional demultiplexer that enables a specific element in an array of nano-wires to be addressed even if one or more connections to that nano-wire are defective. The k-bit address for each nano-wire is extended to a k+s-bit address by appending s check bits generated by an encoder. We demonstrate a systematic strategy for selecting effective encoding functions, based on error-correcting codes commonly used for digital data transmission. Small numbers of redundant address wires can provide significant protection from fabrication errors at the nano-scale in order to attain desired manufacturing yields. This coding gain can translate into significant economic gains in manufacturing costs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams: Science 280, 1716 (1998)CrossRefGoogle Scholar
  2. 2.
    K. Nikolic, A. Sadek, M. Forshaw: Nanotechnology 13, 357 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    J. Han, P. Jonker: Nanotechnology 14, 224 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    P.J. Kuekes, R.S. Williams, J.R. Heath: US Patent No. 6 128 214 (2000)Google Scholar
  5. 5.
    C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Science 285, 391 (1999)CrossRefGoogle Scholar
  6. 6.
    J.R. Heath, P.J. Kuekes, R.S. Williams: US Patent No. 6 459 095 (2002)Google Scholar
  7. 7.
    Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath: Chem. Phys. Chem. 3, 519 (2002)Google Scholar
  8. 8.
    Y. Chen, G.-Y. Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, R.S. Williams: Nanotechnology 14, 462 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, R.S. Williams, J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, D.L. Olynick, E. Anderson: Appl. Phys. Lett 82, 1610 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber: Science 302, 1377 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    A. DeHon: IEEE Trans. Nanotechnol. 2, 23 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    F.J. MacWilliams, N.J.A. Sloane: The Theory of Error-Correcting Codes (North-Holland, New York 1990)Google Scholar
  13. 13.
    S.B. Wicker: Error Control Systems for Digital Communication and Storage (Prentice-Hall, Upper Saddle River 1995)Google Scholar
  14. 14.
    D. Jaffe web site: ‘Information about binary linear codes’, http://www.math.unl.edu/∼djaffe/codes/webcodes/codeform.htmlGoogle Scholar
  15. 15.
    P.J. Kuekes, W. Robinett, G. Seroussi, R.S. Williams: ‘Defect-Tolerant Interconnect to Nanoelectronic Circuits: Internally Redundant Demultiplexers Based on Error-Correcting Codes’, submitted to Nanotechnology (2004)Google Scholar
  16. 16.
    International Technology Roadmap for Semiconductors, 2003 edn., http://blic.itrs.netGoogle Scholar
  17. 17.
    J. von Neumann: ‘Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components’. In: Automata Studies, ed. by C.E. Shannon, J. McCarthy (Princeton University Press, Princeton, NJ, USA 1956) pp. 43–98Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • P.J. Kuekes
    • 1
  • W. Robinett
    • 1
  • G. Seroussi
    • 1
  • R. Stanley Williams
    • 1
  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations