Advertisement

Applied Physics A

, Volume 80, Issue 5, pp 951–956 | Cite as

Tailoring electronic properties of atomic chains assembled by STM

  • N. NiliusEmail author
  • T.M. Wallis
  • W. Ho
Article

Abstract

Atomic chains were assembled from single Au and Pd atoms on a NiAl(110) surface, using the tip of a scanning tunneling microscope. The electronic properties of the chains were investigated by spatially resolved conductance spectroscopy and microscopy, revealing the development of a one-dimensional, free-electron-like band. Onset energy, effective electron mass, and spatial localization of the band were influenced by structural and chemical modifications of the chains. The experiments demonstrate the effects of interatomic spacing and elemental composition of the chains, as well as the roll of local impurities and adsorption on the properties of the one-dimensional electronic system.

Keywords

NiAl Atomic Chain Standing Wave Pattern NiAl Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W. Odom, J.L. Huang, P. Kim, C. Lieber: Nature 391, 62 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Hornbaker, S.J. Kahng, S. Misra, B.W. Smith, A.T. Johnson, E.J. Mele, D.E. Luzzi, A. Yazdani: Science 295, 828 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    B. Pampuch, O. Rader, T. Kachel, W. Gudat, C. Carbone, R. Kläsges, G. Bihlmayer, S. Blügel, W. Eberhardt: Phys. Rev. Lett. 85, 2561 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    N.F. Mott: Metal–Insulator Transitions (Taylor & Francis, London 1974)Google Scholar
  5. 5.
    J. Voit: Rep. Prog. Phys. 58, 977 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    K.H. Lau, W. Kohn: Surf. Sci. 75, 69 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    P.G. Collins, K. Bradley, M. Ishigami, A. Zettl: Science 287, 1801 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner: Science 293, 2227 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    K. Kuhnke, K. Kern: J. Phys.: Condens. Matter 15, 3311 (2003)ADSGoogle Scholar
  10. 10.
    A. Mugarza, A. Mascaraque, V. Perez-Dieste, V. Repain, S. Rousset, F.J. Garcia de Abajo, J.E. Ortega: Phys. Rev. Lett. 87, 107601 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    P.W. Murray, I. Brookes, S.A. Haycock, G. Thornton: Phys. Rev. Lett. 80, 988 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    K. Kern, H. Niehus, A. Schatz, P. Zeppenfeld, J. George, G. Comsa: Phys. Rev. Lett. 67, 855 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    L. Pleth Nielsen, F. Besenbacher, I. Stensgaard, E. Laegsgaard, C. Engdahl, P. Stoltze, J.K. Nørskov: Phys. Rev. Lett. 74, 1159 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    K.N. Altmann, J.N. Crain, A. Kirakosian, J.L. Lin, D. Petrovykh, F.J. Himpsel, R. Losio: Phys. Rev. B 64, 035406 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    A. Kirakosian, J.L. McChesney, R. Bennewitz, J.N. Crain, J.L. Lin, F.J. Himpsel: Surf. Sci. 498, 109 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    D.M. Eigler, E.K. Schweizer: Nature 344, 524 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    L. Bartels, G. Meyer, K.H. Rieder: Phys. Rev. Lett. 79, 697 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    S. Fölsch, P. Hyldgaard, R. Koch, K.H. Ploog: Phys. Rev. Lett. 92, 056803 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    M.F. Crommie, C.P. Lutz, D.M. Eigler: Nature 363, 524 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    T. Jamneala, V. Madhavan, M.F. Crommie: Phys. Rev. Lett. 87, 256804 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    H.J. Lee, W. Ho: Science 286, 5445 (1999)Google Scholar
  22. 22.
    B.C. Stipe, M.A. Rezaei, W. Ho: Rev. Sci. Instrum. 70, 137 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    N. Nilius, T.M. Wallis, W. Ho: Science 297, 1853 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    N. Nilius, T.M. Wallis, M. Persson, W. Ho: Phys. Rev. Lett. 90, 196103 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    The eigenstates En in a 1D quantum well with infinite walls are calculated from the effective electron mass meff, the well length L, and the quantum number n using En=(ℏ2/2meff)(nπ/L)2Google Scholar
  26. 26.
    T.M. Wallis, N. Nilius, W. Ho: Phys. Rev. Lett. 89, 236802 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    G. Mills, B. Wang, W. Ho, H.J. Metiu: J. Chem. Phys. 120, 1138 (2004)CrossRefGoogle Scholar
  28. 28.
    C. Kittel: Introduction to Solid State Physics (Wiley, New York 1996)Google Scholar
  29. 29.
    N. Nilius, T.M. Wallis, M. Persson, W. Ho: to be publishedGoogle Scholar
  30. 30.
    T.M. Wallis, N. Nilius, W. Ho: J. Chem. Phys. (2004), in pressGoogle Scholar
  31. 31.
    N. Nilius, T.M. Wallis, W. Ho: Phys. Chem. B 108, 14616 (2004)CrossRefGoogle Scholar
  32. 32.
    T.M. Wallis, N. Nilius, W. Ho: J. Chem. Phys. 119, 2296 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    G. Blyholder: J. Phys. Chem. 68, 2772 (1964)CrossRefGoogle Scholar
  34. 34.
    N. Nilius, T.M. Wallis, W. Ho: Phys. Rev. Lett. 90, 186102 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    N. Nilius, T.M. Wallis, W. Ho: Jpn. J. Appl. Phys. 42, 4790 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations