Skip to main content

Growth and magnetism of Fe on Cr(001): a spin-polarized scanning tunneling spectroscopy and magnetic force microscopy study

Abstract

The growth and magnetic domain structure of Fe nanoislands and films on Cr(001) are investigated by spin-polarized scanning tunneling microscopy and magnetic force microscopy (MFM). Topographic images of films grown at different substrate temperatures reveal that the highest film quality is obtained by evaporation at room temperature and subsequent annealing at 500 K for 4 min. Spin-resolved studies of the magnetic structure of submonolayer Fe films (coverage θ≤0.2 ML) show the expected antiferromagnetic Fe–Cr coupling, i.e. any Fe island is magnetized antiparallel with respect to the underlying Cr(001) terrace. As the Fe coverage exceeds 0.2 ML the magnetic contrast decreases and completely vanishes for θ≥0.4 ML. Only for θ≥3 ML does a weak magnetic contrast reappear, which is interpreted in terms of a small spatial variation of the 90° coupling between the Cr substrate and the Fe overlayer. MFM reveals that the number of visible domain walls decreases with increasing film thickness and completely vanishes at 12 ML.

This is a preview of subscription content, access via your institution.

References

  1. H. Zabel: J. Phys.: Condens. Matter 11, 9303 (1999)

    ADS  Google Scholar 

  2. R.S. Fishman: J. Phys.: Condens. Matter 13, R235 (2000)

  3. C.M. Schmid, D.E. Buergler, D.M. Schaller, F. Meisinger, H.-J. Güntherodt: Phys. Rev. B 60, 4158 (1999)

    Article  ADS  Google Scholar 

  4. C.M. Schmid, D.E. Buergler, D.M. Schaller, F. Meisinger, H.-J. Güntherodt, K. Temst: J. Appl. Phys. 89, 181 (2001)

    Article  ADS  Google Scholar 

  5. A.M.N. Niklasson, B. Johansson, L. Nordström: Phys. Rev. Lett. 82, 4544 (1999)

    Article  ADS  Google Scholar 

  6. E.J. Escorcia-Aparicio, H.J. Choi, W.L. Ling, R.K. Kawakami, Z.Q. Qiu: Phys. Rev. Lett. 81, 2144 (1998)

    Article  ADS  Google Scholar 

  7. E.J. Escorcia-Aparicio, J.H. Wolfe, H.J. Choi, W.L. Ling, R.K. Kawakami, Z.Q. Qiu: Phys. Rev. B 59, 11892 (1999)

    Article  ADS  Google Scholar 

  8. H. Hopster: Phys. Rev. Lett. 83, 1227 (1999)

    Article  ADS  Google Scholar 

  9. D.T. Pierce, R.J. Celotta, J. Unguris: J. Appl. Phys. 73, 6201 (1993)

    Article  ADS  Google Scholar 

  10. A. Davies, J.A. Stroscio, D.T. Pierce, R.J. Celotta: Phys. Rev. Lett. 76, 4175 (1996)

    Article  ADS  Google Scholar 

  11. R. Pfandzelter, T. Igel, H. Winter: Phys. Rev. B 54, 4496 (1996)

    Article  ADS  Google Scholar 

  12. M. Kleiber, M. Bode, R. Ravlić, R. Wiesendanger: Phys. Rev. Lett. 85, 4606 (2000)

    Article  ADS  Google Scholar 

  13. M. Kleiber, M. Bode, R. Ravlić, N. Tezuka, R. Wiesendanger: J. Magn. Magn. Mater. 240, 64 (2002)

    Article  ADS  Google Scholar 

  14. J.A. Stroscio, D.T. Pierce, A. Davies, R.J. Celotta, M. Weinert: Phys. Rev. Lett. 75, 2960 (1995)

    Article  ADS  Google Scholar 

  15. R. Wiesendanger, H.J. Güntherodt, G. Güntherodt, R.J. Gambino, R. Ruf: Phys. Rev. Lett. 65, 247 (1990)

    Article  ADS  Google Scholar 

  16. J.C. Slonczewski: Phys. Rev. B 39, 6995 (1989)

    Article  ADS  Google Scholar 

  17. M. Bode: Rep. Prog. Phys. 66, 523 (2003)

    Article  ADS  Google Scholar 

  18. NanoSensors GmbH, Aidlingen, Germany

  19. A. Berger, H. Hopster: Phys. Rev. Lett. 73, 193 (1994)

    Article  ADS  Google Scholar 

  20. B. Heinrich, J.F. Cochran, T. Monchesky, R. Urban: Phys. Rev. B 59, 14520 (1999)

    Article  ADS  Google Scholar 

  21. K. Mibu, M. Almokhtar, S. Tanaka, A. Nakanishi, T. Kobayashi, T. Shinjo: Phys. Rev. Lett. 84, 2243 (2000)

    Article  ADS  Google Scholar 

  22. Y.J. Choi, I.C. Jeong, J.-Y. Park, S.-J. Kahng, J. Lee, Y. Kuk: Phys. Rev. B 59, 10918 (1999)

    Article  ADS  Google Scholar 

  23. R. Ravlić, M. Bode, R. Wiesendanger: J. Phys.: Condens. Matter 15, S2513 (2003)

  24. S. Blügel, D. Pescia, P.H. Dederichs: Phys. Rev. B 39, 1392 (1989)

    Article  ADS  Google Scholar 

  25. R. Ravlić, M. Bode, A. Kubetzka, R. Wiesendanger: Phys. Rev. B 67, 174411 (2003)

    Article  ADS  Google Scholar 

  26. A. Vega, A. Rubio, L.C. Balbas, J. Dorantes-Davila, S. Bouarab, C. Demangeat, A. Mokrani, H. Dreyssé: J. Appl. Phys. 69, 4544 (1991)

    Article  ADS  Google Scholar 

  27. D. Stoeffler, F. Gautier: J. Magn. Magn. Mater. 147, 260 (1995)

    Article  ADS  Google Scholar 

  28. F. Herman, J. Sticht, M.V. Schilfgaarde: J. Appl. Phys. 69, 4783 (1999)

    Article  ADS  Google Scholar 

  29. E. Fawcett, H.L. Alberts, V.Y. Galkin, D.R. Noakes, J.V. Yakhmi: Rev. Mod. Phys. 66, 25 (1994)

    Article  ADS  Google Scholar 

  30. W. Guo, L.P. Shi, D.L. Lin: Phys. Rev. B 62, 14259 (2000)

    Article  ADS  Google Scholar 

  31. J.C. Slonczewski: Phys. Rev. Lett. 67, 3172 (1991)

    Article  ADS  Google Scholar 

  32. C. Kittel: Rev. Mod. Phys. 21, 541 (1949)

    Article  ADS  Google Scholar 

  33. E.C. Stoner: Rep. Prog. Phys. 13, 83 (1950)

    Article  ADS  Google Scholar 

  34. P. Bödeker, A. Hucht, A. Schreyer, J. Borchers, F. Güthoff, H. Zabel: Phys. Rev. Lett. 81, 914 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bode.

Additional information

PACS

68.55.-a; 75.60.Ch; 68.37.Ef

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bode, M., Ravlić, R., Kleiber, M. et al. Growth and magnetism of Fe on Cr(001): a spin-polarized scanning tunneling spectroscopy and magnetic force microscopy study. Appl. Phys. A 80, 907–912 (2005). https://doi.org/10.1007/s00339-004-3115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3115-y

Keywords

  • Magnetic Force Microscopy
  • Scanning Tunneling Spectroscopy
  • Magnetic Domain Structure
  • Magnetic Contrast
  • Magnetic Force Microscopy Image