Applied Physics A

, Volume 81, Issue 1, pp 137–142 | Cite as

Electroless deposition of Ag on Pd-activated TiN/p-Si(100) substrate



Nano-thick Ag films were electrolessly deposited on TiN/p-Si(100) substrates. The substrates were prepared by sputtering TiN on p-Si(100) wafers. An activation process of the substrates was performed by immersing the substrates in a solution of 0.0019 moL L-1 PdCl2+0.45 moL L-1 HF+8.7 moL L-1 aceticacid+0.036 moL L-1 HCl so as to obtain the Pd seed layer. The general composition of the electroless Ag bath was 0.0032 moL L-1 AgNO3+2.24 moL L-1 NH3+0.56 moL L-1 aceticacid+0.1 moL L-1 NH2NH2 at pH 10.2. The morphologies of the Pd seed layer and the Ag films were characterized by atomic force microscopy (AFM). The effect of the Pd activation on electroless Ag deposition was tested by open circuit potential with time technology (OCP-t). For comparison, the morphology of the films deposited by electrochemical deposition on the substrates was also studied by AFM.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Chen, Y. Zeng, P. Nyugen, T.L. Alford: Mater. Chem. Phys. 76, 224 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    A. Inberg, L. Zhu, G. Hirschberg, A. Gladkikh, N. Croitoru, Y. Shacham-Diamand, E. Gileadi: J. Electrochem. Soc. 148, C784 (2001)Google Scholar
  3. 3.
    M.V. ten Kortenaar, J.J.M. de Goeij, Z.I. Kolar, G. Frens, P.J. Lusse, M.R. Zuiddam, E. van der Drift: J. Electrochem. Soc. 148, C28 (2001)Google Scholar
  4. 4.
    Y. Shacham-Diamand, A. Inberg, Y. Sverdlov, N. Croitoru: J. Electrochem. Soc. 147, 3345 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Inberg, Y. Shacham-Diamand, E. Rabinovich, G. Golan, N. Croitoru: Thin Solid Films 389, 213 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    R.M. Stiger, S. Gorer, B. Craft, R.M. Penner: Langmuir 15, 790 (1999)CrossRefGoogle Scholar
  7. 7.
    A. Samsavar, E.S. Hirschorn, F.M. Leibsle, T.-C. Chiang: Phys. Rev. Lett. 63, 2830 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    S.-H. Chou, A.J. Freeman, S. Grigoras, T.M. Gentle, B. Delley, E. Wimmer: J. Chem. Phys. 89, 5177 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    H. Tong, L. Zhu, M. Li, C. Wang: Electrochim. Acta 48, 2473 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Wang, H. Tong, M. Li, Q. Sun: Chem. J. Internet 4, 46 (2002)Google Scholar
  11. 11.
    H. Tong, C.M. Wang: Acta Chim. Sin. 60, 1923 (2002)Google Scholar
  12. 12.
    F. Jing, H. Tong, L. Kong, C. Wang: Appl. Phys. A, DOI: 10.1007/s00339-004-3067-2 (2004)Google Scholar
  13. 13.
    T.C. Nason, G.R. Yang, K.H. Park, T.M. Lu: J. Appl. Phys. 70, 1392 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    S.W. Hoog, Y.S. Lee, K.-C. Park, J.-W. Park: J. Electrochem. Soc. 150, C16 (2003)Google Scholar
  15. 15.
    J.P. O’Kelly, K.F. Mongey, Y. Gobil, J. Torres, P.V. Kelly, G.M. Crean: Microelectron. Eng. 50, 473 (2000)CrossRefGoogle Scholar
  16. 16.
    J.C. Patterson, M. O’Reilly, G.M. Crean, J. Barrett: Microelectron. Eng. 33, 65 (1997)CrossRefGoogle Scholar
  17. 17.
    Y. Lantasov, R. Palmans, K. Maex: Microelectron. Eng. 50, 441 (2000)CrossRefGoogle Scholar
  18. 18.
    Y. Wu, W.C. Chen, H.P. Fong, C.C. Wan, Y.Y. Wang: J. Electrochem. Soc. 149, G309 (2002)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of ChemistryLanzhou UniversityLanzhouChina

Personalised recommendations