Skip to main content
Log in

GaAs(111)A/B surface orientation effects on electron density in normal and inverted pseudomorphic HEMTs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present calculations of the two-dimensional electron density in a Si δ-doped AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (P-HEMT), at low temperature, for three different growth directions (001) and (111)A/B. The calculations are made using a self-consistent resolution of Schrödinger and Poisson equations. The presence of a strong built-in piezoelectric field in (111)A/B growth directions causes changes of the confining potential shape and the carrier distribution in the InGaAs channel. We discuss the influence of GaAs substrate orientation on the conduction-band structure and thereafter on the two-dimensional electron gas (2DEG) concentration in the channel. Our results show that the calculated 2DEG concentration in the normal P-HEMT structure grown on a (111)A GaAs substrate is significantly higher than those grown on (001) and (111)B GaAs substrates. We also note an increase of the average separation between the ionized donors and the carriers. On the other hand, the GaAs (111)B substrate orientation appears as inadequate for the type of structure (normal P-HEMT) on account of the charge-transfer reduction in the channel compared with the (001) orientation. In contrast, we demonstrate that the calculated 2DEG Si δ-doped GaAs/InGaAs/AlGaAs pseudomorphic inverted high electron mobility transistor (PI-HEMT) grown on aGaAs (111)B substrate is appreciably higher than that grown on (001) and afterwards an enhancement of the spatial separation between confined electrons in the channel and ionized dopants occurs. These effects might result in considerably improved devices of great interest regarding high electron mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shuweizer, K. Köhler, P. Ganser: Appl. Phys. Lett. 60, 469 (1992)

    Article  ADS  Google Scholar 

  2. A. Dadabalapur, V.P. Kesan, D.P. Neikirk, B.G. Streetman: Appl. Phys. Lett. 54, 1675 (1989)

    Article  ADS  Google Scholar 

  3. G. Li, A. Babinski, S.J. Chua, C. Jagadish: Appl. Phys. Lett. 72, 2322 (1998)

    Article  ADS  Google Scholar 

  4. J. Matthews, A.E. Blakeslee: J. Cryst. Growth 27, 118 (1974)

    ADS  Google Scholar 

  5. I.J. Fritz, T. Picraux, L.R. Dawson, W.D. Laidig, N.G. Anderson: Appl. Phys. Lett. 46, 967 (1985)

    Article  ADS  Google Scholar 

  6. H. Sakaky, T. Noda, K. Hirakawa, M. Tanaka, T. Matsusue: Appl. Phys. Lett. 53, 684 (1988)

    Article  Google Scholar 

  7. J.L. Sanchez-Rojas, A. Sacedon, F. Gonzalez-Sanz, E. Calleja, E. Munoz: Appl. Phys. Lett. 65, 2042 (1994)

    Article  ADS  Google Scholar 

  8. M.P. Halsall, J.E. Nicholls, J.J. Davies, P.J. Wright, B. Cockayne: Surf. Sci. 228, 41 (1990)

    Article  ADS  Google Scholar 

  9. B.S. Xoo, X.C. Liu, A. Petrou, J.-P. Cheng, A.A. Reeder, B.D. McCombe, K. Elcess, C.G. Fonstad: Superlattices Microstruct. 5, 363 (1989)

    Article  ADS  Google Scholar 

  10. D.L. Smith, C. Mailhiot: J. Appl. Phys. 63, 2717 (1988)

    Article  ADS  Google Scholar 

  11. A. Chin, P. Martin, P. Ho, J. Ballingall, T.-H. Yu, J. Mazurowski: Appl. Phys. Lett. 59, 1899 (1991)

    Article  ADS  Google Scholar 

  12. T. Anan, K. Nishi, S. Sugou: Appl. Phys. Lett. 60, 3159 (1992)

    Article  ADS  Google Scholar 

  13. J.J. Sanchez, J.M.G. Tejero, J. Hernando, J.L. Sanchez-Rojas, I. Izpura: Microelectron. J. 30, 363 (1999)

    Article  Google Scholar 

  14. L. Bouzaiene, L. Sfaxi, H. Sghaeir, H. Maaref: J. Appl. Phys. 85, 8223 (1999)

    Article  ADS  Google Scholar 

  15. P. Ruden, G.H. Dohler: Phys. Rev. B 27, 3538 (1983)

    Article  ADS  Google Scholar 

  16. A. Leuther, A. Föster, H. Lüth, H. Holzbercher, U. Breur: Semicond. Sci. Technol. 11, 766 (1996)

    Article  ADS  Google Scholar 

  17. T.S. Moise, L.J. Guido, J.C. Beggy, T.J. Cunningham, S. Seshadri, R.C. Barker: J. Electron. Mater. 21, 119 (1992)

    Article  ADS  Google Scholar 

  18. P.O. Vaccaro, K. Tominaga, M. Hosoda, K. Fujita, T. Watanabe: Jpn. J. Appl. Phys. 34, 1362 (1995)

    Article  ADS  Google Scholar 

  19. R.A. Hogg, T.A. Fisher, A.R.K. Willcox, D.M. Whittaker, M.S. Skolnick, D.J. Owbray, J.P.R. David, A.S. Pabla, G.J. Rees, R. Grey, J. Woodhead, J.L. Sanchez-Rojas, G. Hill, M.A. Pate, P.N. Robson: Phys. Rev. B 48, 8491 (1993)

    Article  ADS  Google Scholar 

  20. J.D. Bruno, R.L. Toper: J. Appl. Phys. 85, 2221 (1999)

    Article  ADS  Google Scholar 

  21. P. Ballet, P. Disseix, J. Leymarie, A. Vasson, A.M. Vasson: Phys. Rev. B 59, R5308 (1999)

  22. C.H. Chan, M.C. Chen, H.H. Lin, Y.F. Chen, G.J. Jan, Y.H. Chen: Appl. Phys. Lett. 72, 1208 (1998)

    Article  ADS  Google Scholar 

  23. A.S. Pabla, J. Woodhead, E.A. Khoo, R. Grey, J.P. David, G.J. Rees: Appl. Phys. Lett. 68, 1595 (1996)

    Article  ADS  Google Scholar 

  24. L. Bouzaiene, S. Rekaya, H. Sghaier, L. Sfaxi, H. Maaref: Appl. Phys. A (2004), in press

  25. W. Yeo, R. Dimitrov, W.J. Schaff, L.F. Eastman: Appl. Phys. Lett 77, 2764 (2000)

    Article  ADS  Google Scholar 

  26. T.C. Rojas, S.I. Molina, M.J. Romero, R. García, A. Sacedón, E. Calleja: Mater. Sci. Eng. 44, 106 (1997)

    Article  Google Scholar 

  27. M. Henini, P.J. Rodgers, P.A. Crump, B.L. Gallagher, R.K. Hayden, L. Eaves: Thin Solid Films 267, 106 (1995)

    Article  ADS  Google Scholar 

  28. L. Konczewicz, B. Jouault, S. Contreras, M.L. Sadwski, J.L. Robert, S. Blans, Ch. Fontaine: Phys. Status Solidi B 223, 507 (2001)

    Article  ADS  Google Scholar 

  29. A. Chin, P. Martin, P. Ho, J. Ballingall, T.H. Yu, J. Mazurowski: Appl. Phys. Lett. 59, 1899 (1991)

    Article  ADS  Google Scholar 

  30. J.W. Mayer, S.S. Lau: Electronic Materials Science: For Integrated Circuits in Si and GaAs (Maxwell Macmillan, New York 1990)

  31. P.P. Gonzalez-Borrero, D.I. Lubyshev, E. Marega Jr., E. Petitprez, P. Basmaji: J. Cryst. Growth 169, 424 (1996)

    Article  ADS  Google Scholar 

  32. N. Pan, J. Carter, X.L. Zheng, H. Hendriks, C.H. Wu, K.C. Hsieh: Appl. Phys. Lett. 58, 71 (1991)

    Article  ADS  Google Scholar 

  33. A.A. Zhukov, C. Weichsel, S. Beyer, S. Schnüll, C. Heyn, W. Hansen: Phys. Rev. B 67, 125310 (2003)

    Article  ADS  Google Scholar 

  34. T. Ando, A.B. Fowler, F. Stern: Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Maaref.

Additional information

PACS

73.20.Dx; 73.20.At; 73.90.+f; 73.63.Hs; 72.20.Dp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekaya, S., Bouzaiene, L., Sfaxi, L. et al. GaAs(111)A/B surface orientation effects on electron density in normal and inverted pseudomorphic HEMTs. Appl. Phys. A 81, 79–85 (2005). https://doi.org/10.1007/s00339-004-3018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3018-y

Keywords

Navigation