Skip to main content
Log in

Fabrication of self-standing nanowires, nanodendrites, and nanofractal-like trees on insulator substrates with an electron-beam-induced deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Self-standing tungsten nanowires, nanodendrites, and nanofractal-like trees were fabricated on insulator (Al2O3) substrates with a process of electron-beam-induced decomposition in a transmission electron microscope. The conditions for fabricating different morphologies are described. The fabricated structures are characterized with high-resolution transmission electron microscopy and X-ray energy-dispersive spectroscopy. A high concentration of tungsten and a high crystallinity of the structure are confirmed. The growth process is discussed, involving charges produced on the surface of the substrate and the behavior of precursor molecules under electron-beam irradiation. The formation of these structures is considered to relate to nanoscaled unevenness of the charge distribution on the surface of the substrate, movement of charges to the convex surface of the substrate, and accumulation of charges at the tips of the grown structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima: Nature 354, 56 (1991)

    Article  Google Scholar 

  2. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Takahashi: Chem. Phys. Lett. 309, 165 (1999)

    Article  Google Scholar 

  3. J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky: Science 277, 788 (1997); M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Nature 381, 678 (1996); Q.H. Wang, M. Yan, R.P.H. Chang: Appl. Phys. Lett. 78, 1294 (2001)

    Article  Google Scholar 

  4. H.F. Zhang, C.M. Wang, E.C. Buck, L.S. Wang: Nano Lett. 3, 577 (2003)

    Article  MATH  Google Scholar 

  5. Z.J. Shi, Y.F. Lian, F.H. Liao, X.H. Zhou, Z.N. Gu, T. Zhang, S. Iijima, H.D. Li, K.T. Yue, S.L. Zhang: J. Phys. Chem. Solids 61, 1031 (2000)

    Article  MATH  Google Scholar 

  6. Z.R. Dai, Z.W. Pan, Z.L. Wang: Adv. Funct. Mater. 13, 9 (2003)

    Article  MATH  Google Scholar 

  7. Y. Jin, K.B. Tang, C.H. An, L.Y. Huang: J. Cryst. Growth 253, 429 (2003)

    Article  Google Scholar 

  8. J. Zhou, N.S. Xu, S.Z. Deng, J. Chen, J.C. She, Z.L. Wang: Adv. Mater. 15, 1835 (2003)

    Article  Google Scholar 

  9. K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Appl. Phys. Lett. 83, 2064 (2003)

    Article  Google Scholar 

  10. L.X. Dong, F. Arai, T. Fukuda: Appl. Phys. Lett. 81, 1919 (2002)

    Article  Google Scholar 

  11. I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: J. Vac. Sci. Technol. B 18, 3168 (2000)

    Google Scholar 

  12. H. Brückl, J. Kretz, H.W. Koops, G. Reiss: J. Vac. Sci. Technol. B 17, 1350 (1999)

    Google Scholar 

  13. H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Jpn. J. Appl. Phys. Part 1 33, 7099 (1994)

    Article  Google Scholar 

  14. H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum: J. Vac. Sci. Technol. B 6, 477 (1988)

    Google Scholar 

  15. H. Hiroshima, N. Suzuki, N. Ogawa, M. Komuro: Jpn. J. Appl. Phys. 38, 7135 (1999)

    Article  Google Scholar 

  16. P.C. Hoyle, J.R.A. Cleaver, H. Ahmed: J. Vac. Sci. Technol. B 14, 662 (1996)

    Article  Google Scholar 

  17. K.T. Kohlmann-von Platen, J. Chlebek, M. Weiss, K. Reimer, H. Oertel, W.H. Brünger: J. Vac. Sci. Technol. B 11, 2219 (1993)

    Google Scholar 

  18. S. Matsui, T. Kaito, J. Fujita, M. Komura, K. Kanda, Y. Haruyama: J. Vac. Sci. Technol. B 18, 3181 (2000)

    Google Scholar 

  19. F. Banhart: Phys. Rev. E 52, 5156 (1995)

    Article  Google Scholar 

  20. J.Z. Zhang, X.Y. Ye, X.J. Yang, D. Liu: Phys. Rev. E 55, 5796 (1997)

    Article  Google Scholar 

  21. H.Z. Wang, X.H. Liu, X.J. Yang, X. Wang: Mater. Sci. Eng. A 311, 180 (2001)

    Article  Google Scholar 

  22. H. Masuda, H. Yamada, M. Satoh, H. Asoh: Appl. Phys. Lett. 71, 2770 (1997)

    Article  Google Scholar 

  23. J.W. Coburn, H.F. Winters: J. Appl. Phys. 50, 3189 (1979)

    Article  Google Scholar 

  24. M.D. Noskov, M. Sack, A.S. Malinovski, A.J. Schwab: J. Phys. D: Appl. Phys. 34, 1389 (2001)

    Article  Google Scholar 

  25. M.M.R. Howlader, C. Kinoshita, T. Izu, K. Shiiyama, M. Kutsuwada: J. Nucl. Mater. 239, 245 (1996)

    Article  Google Scholar 

  26. K. Shiiyama, T. Izu, C. Kinoshita, M. Kutsuwada: J. Nucl. Mater. 233, 1332 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Song.

Additional information

PACS

81.07.-b; 07.78.+s; 81.15.Gh; 81.16.-c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., Mitsuishi, K., Tanaka, M. et al. Fabrication of self-standing nanowires, nanodendrites, and nanofractal-like trees on insulator substrates with an electron-beam-induced deposition. Appl. Phys. A 80, 1431–1436 (2005). https://doi.org/10.1007/s00339-004-2997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2997-z

Keywords

Navigation