Skip to main content
Log in

Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Grooves laser-micromachined in InP using 130 fs and 8 ns pulses with fluences ≈2 and 0.7 J/cm2 are investigated by cross-sectional transmission electron microscopy. At the fluence of 2 J/cm2, irradiation with both femtosecond and nanosecond laser pulses yield substantial resolidified layers with a maximum thickness of ≈0.5 μm. In contrast, at the fluence of 0.7 J/cm2, irradiation with nanosecond pulses leads to a layer of similar thickness, while femtosecond irradiation produces laser induced periodic surface structures with minimal resolidified material. For both fluences, femtosecond pulses generate substantial densities of defects extending over a few microns in depth, while nanosecond laser irradiation leads to no observable damage beneath the resolidified layer. The high peak power density and the stress confinement obtained from femtosecond pulses, along with incubation effects, are identified as the major factors leading the observed plastic deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See e.g., B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann: Appl. Phys. A 63, 109 (1996); X. Liu, D. Du, G. Mourou: IEEE J. Quantum Electron. QE-33, 1706 (1997); L. Shah, J. Tawney, M. Richardson, K. Richardson: Appl. Surf. Sci. 183, 151 (2001); G. Kamlage, T. Bauer, A. Ostendorf, B.N. Chichkov: Appl. Phys. A 77, 307 (2003)

    Article  ADS  Google Scholar 

  2. A. Luft, U. Franz, A. Emsermann, J. Kaspar: Appl. Phys. A 63, 93 (1996)

    Article  ADS  Google Scholar 

  3. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, R. Fortunier: Appl. Phys. Lett. 80, 3886 (2002)

    Article  ADS  Google Scholar 

  4. H. Dömer, O. Bostanjoglo: J. Appl. Phys. 91, 5462 (2002)

    Article  ADS  Google Scholar 

  5. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, U. Glatzel: Appl. Phys. A 76, 309 (2003)

    Article  ADS  Google Scholar 

  6. E.A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, D. Doerr: Appl. Phys. Lett. 83, 4420 (2003)

    Article  ADS  Google Scholar 

  7. G.K. Giust, T.W. Sigmon: Appl. Phys. Lett. 70, 767 (1997)

    Article  ADS  Google Scholar 

  8. A. Borowiec, M. MacKenzie, G.C. Weatherly, H.K. Haugen: Appl. Phys. A 76, 201 (2003)

    Article  ADS  Google Scholar 

  9. A. Borowiec, M. MacKenzie, G.C. Weatherly, H.K. Haugen: Appl. Phys. A 77, 411 (2003)

    Article  ADS  Google Scholar 

  10. A. Borowiec, D.M. Bruce, D.T. Cassidy, H.K. Haugen: Appl. Phys. Lett. 83, 225 (2003)

    Article  ADS  Google Scholar 

  11. M.W. Phaneuf: Micron 30, 277 (1999)

    Article  Google Scholar 

  12. J. Bonse, J.M. Wrobel, J. Krüger, W. Kautek: Appl. Phys. A 72, 89 (2001)

    Article  ADS  Google Scholar 

  13. A. Borowiec, H.K. Haugen: Appl. Phys. A 79, 521 (2004)

    Article  ADS  Google Scholar 

  14. E.D. Pilak: Handbook of Optical Constants of Solids (Academic Press, San Diego, California 1985), p. 511

  15. D. Perez, L.J. Lewis: Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  16. C. Schäfer, H.M. Urbassek, L.V. Zhigilei: Phys. Rev. B 66, 115404 (2002)

    Article  ADS  Google Scholar 

  17. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov: Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  18. E. Le Bourhis, G. Patriarche: Phil. Mag. A 82, 1953 (2002)

    Article  ADS  Google Scholar 

  19. D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, W.W. Gerberich: Acta Mater. 47, 333 (1999)

    Article  Google Scholar 

  20. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik: J. Appl. Phys. 85, 6803 (1999)

    Article  ADS  Google Scholar 

  21. J. Bonse, J.M. Wrobel, K.-W. Brzezinka, N. Esser, W. Kautek: Appl. Surf. Sci. 202, 272 (2002)

    Article  ADS  Google Scholar 

  22. J. Bonse, M. Lenzner, J. Krüger: Modification and ablation of semiconductors by femtosecond laser pulses In: Recent Res. Devel. Applied Phys. 5 (part II) (Trivandrum, India, Transworld Research 2002), pp. 437–461

  23. Y. Jee, M.F. Becker, R.M. Walser: J. Opt. Soc. Am. B 5, 648 (1988)

    Article  ADS  Google Scholar 

  24. E. Dupont, X. Zhu, S. Chiu, S. Moisa, M. Buchanan, M. Gao, H.C. Liu, P.B. Corkum: Semicond. Sci. Technol. 15, L15 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Borowiec.

Additional information

PACS

61.80.Ba; 68.35.Gy; 79.20.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borowiec, A., Couillard, M., Botton, G. et al. Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses. Appl. Phys. A 79, 1887–1890 (2004). https://doi.org/10.1007/s00339-004-2962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2962-x

Keywords

Navigation