Abstract
Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead–zirconium–titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ∼110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.
This is a preview of subscription content, access via your institution.
References
R.E. Newnham, G.R. Ruschau: Am. Ceram. Soc. Bull. 75, 51 (1996)
S.H. Cho, J.V. Biggers: J. Am. Ceram. Soc. 66, 743 (1983)
T. Yamamoto: Am. Ceram. Soc. Bull. 71, 978 (1992)
C. Cherring: J. Appl. Phys. 21, 31 (1950)
D.A. Barrow, T.E. Petroff, M. Sayer: Surf. Coat. Technol. 76–77, 113 (1995)
W.S. Beh, Y. Xia: J. Mater. Res. 14, 3995 (1999)
T. Yamamoto, T. Sakuma: J. Am. Ceram. Soc. 77, 1107 (1994)
R.E. Riman, L.E. McCandlish, X. Liu: Single-Crystal-Like Materials, US Patent pending, P24283
H. Hirashima, J. Boy: J. Non-Cryst. Solids 121, 404 (1990)
L.S. Ee, J. Wang, S.C. Ng, L.M. Gan: Mater. Res. Bull. 33, 1045 (1998)
J.H. Choy, Y.S. Han, J.T. Kim: J. Mater. Chem. 5, 65 (1995)
R.C. Buchanan, J. Bey: J. Electrochem. Soc.: Solid State Sci. Technol. 132, 1671 (1985)
C.C. Koch: Annu. Rev. Mater. Sci. 19, 121 (1989)
C.C. Koch, O.B. Cavin, C.G. Mckamey, J.O. Scarbrough: Appl. Phys. Lett. 43, 1017 (1983)
C.C. Koch: Mater. Trans. JIM 36, 85 (1995)
T.P. Shen, C.C. Koch, T.L. McCormick, R.J. Nemanich, J.Y. Huang, J.G. Huang: J. Mater. Res. 10, 139 (1995)
M.L. Trudeau, R. Schulz, D. Dussault, A. Van Neste: Phys. Rev. Lett. 64, 99 (1990)
M.L. Trudeau, J.Y. Huot, R. Schulz, D. Dussault, A. Van Neste, G.L. Esperance: Phys. Rev. B 45, 4626 (1992)
M.L. Trudeau: in Proc. NATO Advanced Study Institute Nanophase Materials, Synthesis, Properties, Applications, ed. by G.C. Hadjipanayis, R.W. Siegel (Kluwer Academic, The Netherlands 1994) p. 153
M.L. Trudeau: Appl. Phys. Lett. 64, 3661 (1994)
A.K. Giri: Adv. Mater. 9, 163 (1997)
G.J. Fan, M.X. Quan, Z.Q. Hu, W. Loser, J. Eckert: J. Mater. Res. 14, 3765 (1999)
A.K. Giri, J. Gonzalez, J.M. Gonzalez: IEEE Trans. Magn. 31, 3904 (1995)
A.K. Giri, P. Garcia Tello, J. Gonzalez, J.M. Gonzalez: J. Appl. Phys. 79, 5479 (1996)
C. Jovalekic, M. Zdujic, A. Radakovic, M. Mitric: Mater. Lett. 24, 365 (1995)
X. Liu, J. Wang, J. Ding, M.S. Chen, Z.X. Shen: J. Mater. Chem. 10, 1745 (2000)
J. Xue, D. Wan, S.-E. Lee, J. Wang: J. Am. Ceram. Soc. 82, 1687 (1999)
J. Xue, J. Wang, T.M. Rao: J. Am. Ceram. Soc. 84, 660 (2001)
J. Wang, J. Xue, D. Wan: Solid State Ionics 127, 169 (2000)
IEEE Standard on Piezoelectricity No. 176-1987, Institute of Electrical and Electronics Engineers (1987) [ISBN 0-7381-2411-7]
B. Guiffard, M. Troccaz: Mater. Res. Bull. 33, 1759 (1998)
B. Balachandran, T.R.N. Kutty: Mater. Chem. Phys. 10, 287 (1984)
M. Traianidis, C. Courtois, A. Leriche: J. Eur. Ceram. Soc. 20, 2713 (2000)
R.N. Das, A. Pathak, P. Pramanik: J. Am. Ceram. Soc. 81, 3357 (1998)
B. Jaffe, W.R. Cook, H. Jaffe: Piezoelectric Ceramics (Academic, London, New York 1971) pp. 142–149
Author information
Authors and Affiliations
Corresponding author
Additional information
PACS
81.07.Wx; 77.84.Dy; 81.20.Ev
Rights and permissions
About this article
Cite this article
Liu, X., Akdogan, E., Safari, A. et al. Mechanically activated synthesis of PZT and its electromechanical properties. Appl. Phys. A 81, 531–537 (2005). https://doi.org/10.1007/s00339-004-2903-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00339-004-2903-8
Keywords
- Zirconium
- Differential Thermal Analysis
- Mechanical Activation
- Mixed Oxide
- Reaction Route