Skip to main content
Log in

Iron-induced magnetic, transport and magnetoresistance behavior in Nd0.67Sr0.33MnO3 epitaxial films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of Fe doping on Mn site in the colossal magnetoresistive film, Nd0.67Sr0.33MnO3 have been studied by preparing the series Nd0.67Sr0.33Mn1-xFexO3 (x=0,0.05 and 0.1). Upon doping, no structural changes have been found. However, the Curie temperature, the associated metal-to-insulator transition temperature and the magnetization decrease drastically with Fe doping. The resistivity in the paramagnetic regime for all the samples follows Emin–Holstein’s theory of small polaron. The polaron activation energy, Wp and resistivity coefficient, A increase with Fe doping. This effect may be ascribed to the fact that upon Fe doping, the long-range ferromagnetic order is destroyed and, therefore, Wp is enhanced in the system. As compared to the La-based system, Fe doping has a stronger tendency to destabilize the long-range ferromagnetic order in the Nd-based system. Large MR (as high as 90%) observed in the epitaxial NSMFO film may be attributed to the good lattice-matching between the grown film and substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. von Helmholt, J. Wecker, B. Holzapfel, L. Shultz, K. Samwer: Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  2. K. Chahara, T. Ohno, M. Kasai, Y. Kozono: Appl. Phys. Lett. 63, 1990 (1993)

    Article  ADS  Google Scholar 

  3. G.C. Xiang, S.M. Bagrat, Q. Li, M. Dominguez, H.L. Ju, R.L. Greene, T. Venkatesan, J.M. Byers, M. Rubinstein: Solid State Commun. 97, 599 (1995)

    Article  ADS  Google Scholar 

  4. W. Prellier, P.H. Lecoeur, B. Mercey: J. Phys.: Condens. Matter 13, R915 (2001)

  5. A.P. Ramirez: J. Phys.: Condens. Matter 9, 8171 (1997)

    ADS  Google Scholar 

  6. G.C. Xiong, Q. Li, H.L. Ju, S.M. Bhagat, S.E. Lofland, R.L. Greene, T. Venkatesan: Appl. Phys. Lett. 67, 3031 (1995)

    Article  ADS  Google Scholar 

  7. K. Hayashi, E. Ohta, H. Wada: Jpn. J. Appl. Phys. 40, L219 (2001)

  8. A. deAndrew, S. Taboada, J.M. Colino, R. Ramirez, M. Garcia-Hermandez, J.L. Martinez: Appl. Phys. Lett. 81, 319 (2002)

    Article  ADS  Google Scholar 

  9. Y. Lu, X.W. Li, G.Q. Gong, G. Xiao, A. Gupta, P. Lecoeur, J.Z. Sun, Y.Y. Wang, V.P. Dravid: Phys. Rev. B 54, 8357 (1996)

    Article  ADS  Google Scholar 

  10. M.M. Xavier, Jr., F.A.O. Cabral, J.H. deAraujo, C. Chesman, T. Dumelow: Phys. Rev. B 63, 012408 (2000)

    Article  ADS  Google Scholar 

  11. X. Chen, Z.H. Wang, J. Cai, B.G. Shen, W.S. Zhan, J.S. Chen: J. Appl. Phys. 86, 4534 (1999)

    Article  ADS  Google Scholar 

  12. A. Ajan, N. Venkataaramani, S. Prasad, S.N. Shringi, A.K. Nigam, R. Pinto: J. Appl. Phys. 83, 7169 (1998)

    Article  ADS  Google Scholar 

  13. Y.L. Chang, C.K. Ong: Appl. Phys. Lett. 82, 1721 (2003)

    Article  ADS  Google Scholar 

  14. H.C. Yang, L.M. Wang, H.E. Horng: Phys. Rev. B 64, 174415 (2001)

    Article  ADS  Google Scholar 

  15. L. Si, Y.L. Chang, J. Ding, C.K. Ong, B. Yao: Appl. Phys. A 77, 641 (2003)

    Article  ADS  Google Scholar 

  16. B.L. Low, S.Y. Xu, C.K. Ong, X.B. Wang, Z.X. Shen: Supercond. Sci. Technol. 10, 41 (1997)

    Article  ADS  Google Scholar 

  17. Y.L. Chang, Q. Huang, C.K. Ong: J. Appl. Phys. 91, 789 (2002)

    Article  ADS  Google Scholar 

  18. A. Boultif, D. Louer: J. Appl. Crystallogr. 24, 987 (1991)

    Article  Google Scholar 

  19. H.P. Klug, L.P. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York 1974)

  20. J. Takeuchi, S. Hirahara, T.P. Dhakal, K. Miyoshi, K. Fujiwara: J. Magn. Magn. Mater. 226230, 884 (2001)

    Google Scholar 

  21. J.R. Sun, G.H. Rao, B.G. Shen, H.K. Wong: Appl. Phys. A 73, 2998 (1998)

    ADS  Google Scholar 

  22. A. Tkachuk, K. Rogacki, D.E. Brown, B. Dabrowski, A.J. Fedro, C.W. Kimball, B. Pyles, X. Xiong, D. Rosenmann, B.D. Dunlap: Phys. Rev. B 57, 8509 (1998)

    Article  ADS  Google Scholar 

  23. B. Raveau, A. Maignan, C. Martin, R. Mahendiran, M. Hervieu: J. Solid State Chem. 151, 330 (2000)

    Article  ADS  Google Scholar 

  24. Y. Sun, W. Tong, X.J. Xu, Y.H. Zhang: Appl. Phys. Lett. 78, 643 (2001)

    Article  ADS  Google Scholar 

  25. K.M. Krisnan, H.L. Ju: Phys. Rev. B 60, 14793 (1999)

    Article  ADS  Google Scholar 

  26. N.H. Hong, J. Sakai, A. Hassini, J. Noudem, M. Gervais, F. Gervais: Mater. Sci. Eng. B 104, 137 (2003)

    Article  Google Scholar 

  27. D. Emin, T. Holstein: Annul. Phys. 13, 647 (1976)

    Google Scholar 

  28. Q. Huang, Z.W. Li, J. Li, C.K. Ong: J. Phys.: Condens. Matter 13, 4033 (2001)

    ADS  Google Scholar 

  29. Y. Sun, X.J. Xu, L. Zheng, Y.H. Zhang: Phys. Rev. B 60, 12317 (1999)

    Article  ADS  Google Scholar 

  30. J.M. deTeressa, K. Dorr, K.H. Muller, L. Schultz, R.I. Chakalova: Phys. Rev. B 58, R5928 (1998)

  31. H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg: Phys. Rev. Lett. 77, 2041 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.L. Chang.

Additional information

PACS

75.47.Gk; 75.47.Lx; 75.70.-i

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y., Ong, C. Iron-induced magnetic, transport and magnetoresistance behavior in Nd0.67Sr0.33MnO3 epitaxial films. Appl. Phys. A 79, 2103–2107 (2004). https://doi.org/10.1007/s00339-004-2895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2895-4

Keywords

Navigation