Skip to main content
Log in

Nano-structured oriented carbon films grown by PLD and CVD methods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

PLD and CVD methods, plasma or bias assisted, have been used to prepare thin films of nano-clustered graphite. The experimental conditions (vz. deposition apparatus, substrate temperature, working pressure, inert sustaining gases, parent species, and applied voltage) have been changed with the final aim of obtaining small graphene particles with the basal planes oriented along the growth vector and perpendicular to the n-Si〈100〉 substrate. Pulsed laser ablation (Nd : YAG, 2nd harmonic: λ=532 nm, hν=2.33 eV, τ=7 ns, ν=10 Hz, Φ≈7 J/cm2), assisted by an RF-plasma, of a pyrolytic graphite target gave good results for nano-structure formation, provided high substrate temperature and high inert gas pressure are maintained. CVD methods, in the presence of high substrate temperature and a DC bias, showed a good attitude to drive a longitudinal growth of graphene layers and nano-wires from a reactive gas flow of Argon/Hydrogen and Methane. The morphology of the films grown at different conditions have been characterised by scanning electron microscopy (SEM). Film quality and nano-particle dimensions have been estimated by Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima: Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  3. J. Robertson: Materials Sci. Eng. R37, 129 (2002)

    Google Scholar 

  4. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N. Wong Shi Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai: Proc. Nat. Ac. Sci. 100, 4984 (2003)

    Article  ADS  Google Scholar 

  5. H. Dai: Surf. Sci. 500, 218 (2002)

    Article  ADS  Google Scholar 

  6. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio: Science 282, 1105 (1998)

    Article  ADS  Google Scholar 

  7. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne: J. Appl. Phys. 90, 5308 (2001)

    Article  ADS  Google Scholar 

  8. D.J. Kim, K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, K.H. Son: J. Appl. Phys. 91, 3847 (2002)

    Article  ADS  Google Scholar 

  9. H. Cui, G. Eres, J.Y. Howe, A. Puretkzy, M. Varela, D.B. Geohegan, D.H. Lowndes: Chem. Phys. Lett. 374, 222 (2003)

    Article  ADS  Google Scholar 

  10. A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, M.L. Simpson: Chem. Phys. Lett. 356, 527 (2002)

    Article  ADS  Google Scholar 

  11. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang: Science 274, 1701 (1996)

    Article  ADS  Google Scholar 

  12. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetam, H.W. Kroto, D.R.M. Walton: Nature 388, 52 (1997)

    Article  ADS  Google Scholar 

  13. J. Dong, W. Shen, B. Zhang, X. Liu, F. Kang, J. Gu, D. Li, N.P. Chen: Carbon 39, 2325 (2001)

    Article  Google Scholar 

  14. J. Libera, Y. Gogotsi: Carbon 39, 1307 (2001)

    Article  Google Scholar 

  15. S. Iijima, T. Wakabayashi, Y. Achiba: J. Phys. Chem. 100, 5839 (1996)

    Article  Google Scholar 

  16. Y. Ando, X. Zhao, M. Ohkohchi: Carbon 35, 153 (1997)

    Article  Google Scholar 

  17. N.G. Shang, F.C.K. Au, X.M. Meng, C.S. Lee, I. Bello, S.T. Lee: Chem. Phys. Lett. 358, 187 (2002)

    Article  ADS  Google Scholar 

  18. A.N. Obraztsov, Al.A. Zakhidov, A.P. Volkov, D.A. Lyashenko: Diamond Relat. Mater. 12, 446 (2003)

    Article  ADS  Google Scholar 

  19. R. Kurt, J.-M. Bonard, A. Karimi: Carbon 39, 1723 (2001)

    Article  Google Scholar 

  20. F. Tuinstra, J.L. Koening: J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  21. A.C. Ferrari, J. Robertson: Phys. Rev. B 61, 14095 (2000)

    Article  ADS  Google Scholar 

  22. A.N. Obraztsov, A.P. Volkov, A.I. Boronin, S.V. Kosheev: Diamond Relat. Mater. 11, 813 (2002)

    Article  ADS  Google Scholar 

  23. A.N. Obraztsov, A.P. Volkov, Al.A. Zakhidov, D.A. Lyashenko, Yu.V. Petrushenko, O.P. Satanovskaya: Appl. Surf. Sci. 215, 214 (2003)

    Article  ADS  Google Scholar 

  24. M.C. Rossi, S. Salvatori, P. Ascarelli, E. Cappelli, S. Orlando: Diamond Relat. Mater. 11, 819 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cappelli.

Additional information

PACS

81.07.-b; 81.15.-z; 78.30.-j; 68.37.-d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappelli, E., Orlando, S., Mattei, G. et al. Nano-structured oriented carbon films grown by PLD and CVD methods. Appl. Phys. A 79, 2063–2068 (2004). https://doi.org/10.1007/s00339-004-2862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2862-0

Keywords

Navigation